期刊文献+

基于小波神经网络的火炮裂纹形状重构 被引量:10

Wavelet Neural Network-based Reconstruction of Gun's Flaw Profiles
下载PDF
导出
摘要 介绍了漏磁无损检测的原理和漏磁场数学模型,提出了用小波神经网络对裂纹形状重构。在仿真试验中,用训练样本对小波神经网络进行训练逼近裂纹形状,训练采用随机梯度下降算法。训练样本来自漏磁场数学模型数据和测量的火炮漏磁信号,用测量数据重构裂纹形状。小波神经网络是多分辨率逼近,通过改变网络的分辨率控制输出精度。结果表明。 The principle and the mathematical model for magnetic flux leakage (MFL) nondestructive inspection were introduced, the use of wavelet neural networks (WNN) for the reconstruction of flaw profiles was presented in this paper. In the simulation experiment, WNN is first trained to approximate the flaw profiles using the trained samples from both the mathematical model data and the measured gun's MFL signals. A stochastic gradient descent algorithm was adopted in the training procedure. The trained WNN was then employed to predict the flaw shape from the measured MFL signals, while WNN is a multi-resolution approximation. The accuracy of estimated flaw profiles is controlled by adapting the number of resolution. The result indicates that the WNN approach can accurately reconstruct flaw profiles.
出处 《兵工学报》 EI CAS CSCD 北大核心 2005年第3期379-382,共4页 Acta Armamentarii
基金 国家自然科学基金资助项目 (5 0 175 10 9)
关键词 材料检测与分析技术 漏磁 裂纹重构 小波神经网络 多分辨率逼近 磁偶极子 火炮身管 measuring and analyzing for material magnetic flux leakage flaw profiles reconstruction wavelet neural network multi-resolution approximation magnetic dipole gun barrel
  • 相关文献

参考文献7

  • 1Haueisen J, Unger R, Beuker T, et al. Evaluation of inverse algorithms in the analysis of magnetic flux leakage data[ J ]. IEEE Transactions on Magnetics, 2002, 38(3) : 1481 - 1488.
  • 2Ramuhalli P, Udpa L, Udpa KS. Electromagnetic NDE signal inversion by function-approximation neural networks [ J ]. IEEE Transactions on Magnetics, 2002, 38(6) : 3633 - 3642.
  • 3Ramuhalli P, Udpa L, Udpa SS. Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[ J ].Journal of Applied Physics, 2003, 93(10) : 8274 - 8275.
  • 4Hwang K, Mandayam S, Udpa KS, et al. Characterization of gas pipeline inspection signals using wavelet basis function neural networks[ J ]. NDT&E International, 2000, 33 : 531 - 545.
  • 5Minkov D, Shoji T. Method for sizing of 3-D surface breaking flaws by leakage flux[ J ]. NDT&E International, 1998, 31(5) : 317 - 324.
  • 6盛景泉,付梦印,刘永信.采用小波神经网络的捷联惯导系统静基座快速初始对准[J].内蒙古大学学报(自然科学版),2003,34(4):468-471. 被引量:5
  • 7Zhang Qinghua, Benveniste A. Wavelet networks[ J ]. IEEE Transactions NN, 1992, 3(6) : 889 - 898.

二级参考文献4

共引文献4

同被引文献91

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部