期刊文献+

支持向量机训练算法比较研究 被引量:15

Comparative Research on Support Vector Machine Training Algorithm
下载PDF
导出
摘要 论文介绍了一种年轻的机器学习方法——支持向量机,详细论述了目前主要的支持向量机的训练算法,包括:二次规划算法,分解算法和增量算法。通过实验验证了普通二次规划算法的缺陷,比较了三种典型的SVM分解训练算法的性能,说明了其相对于二次规划算法的优点和对SVM训练问题的适用性,指出了训练速度优劣的原因。最后指出了未来支持向量机训练算法研究的方向。 This paper introduces a new machine learning algorithm--Support Vector Machine.This paper presents main current SVM training algorithms in detail,including quadratic optimization algorithm,decomposition algotithm and incremental algorithm.The experimental results show the shortcomings of quadratic optimization algorithm.With the comparison of the performance of three classic SVM training algorithms,the authors have proved the advantages and applicability of them for SVM training problem over quadratic optimization algorithm,and have analysed the reasons causing the difference of training speed.In the end they have pointed out the research direction of SVM training algorithms in the future.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第17期79-81,84,共4页 Computer Engineering and Applications
关键词 支持向量机 训练算法 support vector machine,training algorithm
  • 相关文献

参考文献16

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag, 1995.
  • 2Cortes C, Vapnik V.Support Vector Networks.Machine Learning, 1995;(20):273-297.
  • 3Osuna E, Freund R, Girosi F.Training Support Vector Machine: An Applicaion to Face Detection[C].In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognitlon,New York, IEEE,1997,130-136.
  • 4Dumais S,Platt J,Heekerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization[C].In:Proceedings of the 7^th International Conference on Information and Knowledge Management,1998.
  • 5Joachims T.Text Categorization with Support Vector Machines:Learning with Relevant Features[C].In:Proceedings of the 10th Europem Conference on Machine Learning, 1998.
  • 6Courant R,Hilbert D.Methods of Mathematical Physics[M].Volume 1,Berlin: Springer-Verlag, 1953.
  • 7Osuna E,Freund R,Girosi F.An hnproved Training Algorithm for Support Vector Machines[C].In : PrincipeJ, Gile L, Morgan N, Wilson eds.Pmceedings of the 1997 IEEE Workshop on Neural Networks for Signal Proceeding, New York: IEEE, 1997:276-285.
  • 8Joachims T.Making Large-Scale SVM Learning Practical[C].In: Scholkopf B,Burges C J C,Smola A eds.Advanees in Kernel Methods Support Vector Leafing,Cambridge, MA: MIT Press, 1998:169-184.
  • 9Chang C C,Hsu C W,Lin C J.The analysis of decompositon methods for support vector machines[C].In:Workshop on Support Vector machines, IJCAI,1999.
  • 10Platt J C.Fast Training of SVMs Using Sequential Minimal Optimization.In : Scholkopf B, Burges C J C, Smola A J eds.Advances in Kernel Methods-Support Vector Learning,Cambridge, MA: MIT Press 1998:185-208.

同被引文献120

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部