期刊文献+

SAR原始数据压缩技术研究 被引量:4

Study on SAR Raw Data Compression Techniques
下载PDF
导出
摘要 研究两种合成孔径雷达(SAR)原始数据压缩算法,它们是块自适应树型矢量量化算法和块自适应预测编码算法。前者是在使用穷尽型搜索技术的块自适应矢量量化算法的基础上,通过使用树型搜索算法来提高算法的运行效率;后者是通过预测编码来消除SAR原始数据之间的相关性从而提高压缩性能。结合机载SAR实测原始数据,对讨论的各种算法分别进行压缩和解压缩,并进行SAR成像处理。通过比较和分析各种算法的性能及图像域参数,表明块自适应树型矢量量化算法和块自适应预测编码算法能提高SAR原始数据的压缩性能,比较适合实际工程应用。 Two raw data compression algorithms are applied to synthetic aperture radar (SAR) raw data. The block adaptive tree-structure vector quantization (BATSVQ) and the block adaptive predictive quantization (BAPQ) are analyzed. To compare the computational load of BATSVQ with full search block adaptive vector quantization (BAVQ), the LBG algorithm is used to generate a code book for full search. The BATSVQ outperforms the BAVQ at the same rate. Because a linear predictor with few taps can capture most of raw signal correlation, the performance of the BAPQ is superior to that of the block adaptive quantization (BAQ). By using the airborne SAR raw data, the performances achieved in terms of bit reduction and certain quality parameters in the image domain have been evaluated. The BATSVQ and BAPQ algorithms seems well-suited to raw SAR data compression in terms of computational complexity and quality of encoded image at low rates.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第3期325-329,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 合成孔径雷达 数据压缩 块自适应树型矢量量化 块自适应预测编码 synthetic aperture radar (SAR) data compression block adaptive tree-structure vector quantization (BATSVQ) block adaptive predictive quantization (BAPQ)
  • 相关文献

参考文献8

  • 1Benz U,Strodl K,Moreia A.A comparison for SAR raw data compression[J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(5):1266~1276.
  • 2Kwok R. Adaptive quantization of magellan SAR data[J]. IEEE Transactions on Geo-Science and Remote Sensing,1989,27(4):375~383.
  • 3Moreira A, Blaeser F. Fusion of block adaptive and vector quantizer for efficient SAR data compression[A]. Proc IGARSS′93[C].Tokyo,1993.1583~1585.
  • 4杨云志,黄顺吉,王建国.矢量量化在SAR原始数据压缩中的应用[J].系统工程与电子技术,2002,24(6):42-44. 被引量:7
  • 5Max J. Quantizing for minimum distortion[J]. IEEE Transactions on Information Theory,1960,6(3):7~12.
  • 6Enrico M, Olmo G. Lossy predictive coding of SAR raw data[J]. IEEE Transactions on Geo-Science and Remote Sensing,2003,41(5):977~987.
  • 7Jayant N S, Noll P. Digital coding of waveforms[M]. Upper Saddle River. NJ: Prentice-Hall,1984.32~96.
  • 8Pascazio V, Schirinzi G. SAR raw data compression by subband coding[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(5):964~976.

共引文献6

同被引文献40

  • 1郭薇,耿伯英,陈文静.改进的KMP算法在舰船图像匹配中的应用[J].舰船电子工程,2008,28(6):113-116. 被引量:7
  • 2宋莹华,宋建社,薛文通,袁礼海.SAR图像压缩技术的发展与现状[J].计算机应用研究,2005,22(4):6-8. 被引量:10
  • 3关振红,朱兆达,朱岱寅.使用变换域编码技术压缩SAR原始数据[J].电讯技术,2006,46(5):122-126. 被引量:1
  • 4郑伟强,黄顺吉.星载合成孔径雷达数据压缩[J].电讯技术,1996,36(6):7-13. 被引量:4
  • 5quantization of Magellan SAR data[J]. Kwok R. Block adaptive IEEE Trans. on Geoscl. Remote Sensing, 1989, GRS - 27 (4): 375 - 383.
  • 6Benz U. A fuzzy block adaptive quantizer(FBAQ) for synthetic aperture radar[C] ff In Proc Fuzzy Systems, IEEE, Orlando, America, 1994 . 1006 - 1011.
  • 7Lebedeff D, Mathieu P, Barlaud M, et al. Adaptive vector quantlzation for raw sar data[C]//IEEE Trans. on Comm, 1995 2511 - 2514.
  • 8Moreira A, Blaeser F. Fusion of block adaptive and vector quantizer for efficient SAR data compression[C] // Proc. , IGARSS' 93, Tokyo, 1993 . 1583 - 1585.
  • 9Benz U, Strodl K, Moreira A. A comparison of several algorithms for SAR raw data compression[C] // IEEE Trans. on Geosci. and Remote Sensing, 1995 . 1266-1276.
  • 10Shaprio J. Embedded image coding using zerotrees of wavelet co efficients[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3445-3462.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部