期刊文献+

非零平衡强非线性van der Pol系统的奇异性分析及分岔 被引量:1

SINGULARITY AND BIFURCATION ANALYSIS OF A NONZERO BALANCING STRONGLY NONLINEAR SYSTEM
下载PDF
导出
摘要 探讨一类非零平衡强非线性vanderPol系统奇异和分岔特性.首先将系统转化为平面向量场,分析了各种不同平衡点存在的参数条件,得到了参数空间中的转迁集,进而将参数空间划分为不同的区域,揭示了其各种不同的分岔模式. Singularity and Bifurcation Analysis of a Nonzero balancing Strongly Nonlinear System is discussed.At first,this system is translated to a vector field in flat.The parameter conditions by which all kinds of singular points could exist is analyzed,and the critical curves on the parameter space is defined.The parameter subspace is divided into different regions.What is more,the phase diagram according to different regions are obtained,then different kinds of bifurcations are discovered.
作者 季颖 毕勤胜
机构地区 江苏大学理学院
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2005年第2期13-16,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10372037)
关键词 VAN der Pol系统 分岔 转迁集 signular point bifurcation transition boundaries
  • 相关文献

参考文献9

  • 1徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学行为的影响[J].应用数学和力学,2004,25(5):455-466. 被引量:5
  • 2徐鉴,陆启韶,黄玉盈.van der Pol型时滞系统的两参数余维一Hopf分岔及其稳定性[J].固体力学学报,1999,20(4):297-302. 被引量:7
  • 3Zhang Wei,Tang Yun.Golbal dynamics of the cable under combined parametrical and external excitations[J].Int J of Nonlinear Mechanics,2002,37:505-526.
  • 4Zhang Wei.Global and chaotic dynamics for a parametraical excited thin plate[J].Journal of Sound and Vibration,2001,239(5):1 015-1 036.
  • 5Bi Qin-sheng.Dynamical analysis of two coupled parametrically excited van der Pol oscillators[J].International Journal of Nonlinear Mechanics,2004,39:33-54.
  • 6Bi Qin-sheng.Dynamics and modulated chaos for two coupled oscillators[J].International Journal of Bifurcation and Chaos,2004,14(1):1-10.
  • 7毕勤胜,陈章耀,朱玉萍,邹勇.参数激励耦合系统的复杂动力学行为分析[J].力学学报,2003,35(3):367-372. 被引量:7
  • 8Tien Win-min,Namachchivaya N Sri,Bajaj A K.Nonlinear dynamics of a shallow arch under periodic excitation-Ⅰ.1∶2 internal resonance[J].Int J Nonlinear Mech,1994,29:349-366.
  • 9Tien Win-min,Namachchivaya N Sri,Malhotra N.Nonlinear dynamics of a shallow arch under periodic excitation-Ⅱ.1∶1 internal resonance[J].Int J Nonlinear Mech,1994,29:367-386.

二级参考文献38

  • 1赵杰民 黄克累 等.一类带有时滞的动力系统的几个定理与应用[J].应用数学学报,1995,18:422-428.
  • 2艾利期哥尔兹 南开大学数学系编译中队(译).微分方程[M].北京:人民教育出版社,1959..
  • 3Maccari A. Approximation solution of a class of nonlinear oscillators in resonance with periodic excitation. Nonlinear Dynamics, 1998, 15:329-343.
  • 4Maccari A. Nonlinear oscillations with multiple resonant or non-resonant forcing terms, Int J Non-linear Mechanics,1999, 34:27-34.
  • 5Maccari A. Modulated motion and infinite-period bifurcation for two non-linearly coupled and parametrically excited van der Pol oscillators, Int J Non-linear Mechanics,2001, 36:335-347.
  • 6Wiggins S. Global Bifurcation and Chaos. New York:Springer, 1988.
  • 7Tien W, Namachchivaya NS, Medhotra N. Nonlinear dynamics of a shallow arch under periodic excitation-Ⅱ.l:linternal resonance, Int J Nonlinear Mechanics, 1994,29, 367-386.
  • 8Malhotra N, Namachchivaya NS. Global bifurcations in externally excited two-degree-of-freedom nonlinear systems.Nonlinear Dynamics, 1995, 8:85-109.
  • 9Bolotin W, Grishko AA, Kounadis AN, et al. Nonlinear panel flutter in remote post-critical domains,Int J Nonlinear Mechanics, 1998, 33:753-764.
  • 10Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponent from a time series. Physica D, 1985, 16:285-317.

共引文献14

同被引文献6

  • 1BAPPADITYA B,BAJAJ A K,DAVIES P.Resonant dynamics of an autoparametric system:a study using higher-order averaging[J].International Journal of Nonlinear Mechanics,1996,31 (1):21-39.
  • 2MITSI S,NATSIAVAS S,TSIAFIS I.Dynamics of nonlinear oscillators under simultaneous internal and external resonances[J].Nonlinear Dynamics,1998,16:23-39.
  • 3BI Q,DAI H H.Analysis of nonlinear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance[J].Journal of Sound and Vibration,2000,233(4):557-571.
  • 4BI Qin-sheng.Dynamical analysis of two coupled parametrically excited van der pol oscillators[J].International Journal of Nonlinear mechanics,2004,39:33-54.
  • 5冯雪梅,刘佐民.一种新的汽车液力减振器阻力特性模拟模型[J].振动与冲击,2003,22(2):53-56. 被引量:2
  • 6舒歌群,苏炎玲,吕兴才.复合式减振器对柴油机噪声影响的试验研究[J].汽车工程,2003,25(5):460-462. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部