期刊文献+

基于Si/Si_(1-x)Ge_x/Si HBT的微波功率器件Ge组分的数值拟合计算

A Numerical Method for Ge-Profile of Microwave Power Device Based on Si/Si_(1-x)Ge_x/Si
下载PDF
导出
摘要 采用异质结双台面双极型结构设计微波功率器件,选择Si作发射区和集电区,Si1-xGex合金作基区的n-p-n型HBT,利用数学方法,通过实验数据,采用MATLAB得到了一个比线性化更精确的禁带宽度Eg在300K时关于Ge组分变化的方程。并用数值方法计算出集电区电流密度Jc随VBE变化的直流方程,与实验结果相符。并得到一个最佳的Ge组分值。对器件的仿真设计具有实际指导意义。 A double-mesa hetero-junction bipolar structure of n-p-n type microwave power device is used. The Si is chosen for emitter and collector, and Si_ 1-xGe_x alloy is for base. Based on some experiment data, a numerical method is used to get an equation about forbidden band E_g via the variety composition of Ge at 300 K using MATLAB, which is more precision than linearization. We also calculate the collector current density J c via the variety of V_ BE and the obtained equation is consistent with the experiment result. An optimum Ge composition value was found. It has practical significance for the device design and simulation.
出处 《电子器件》 CAS 2005年第2期251-253,共3页 Chinese Journal of Electron Devices
关键词 双极型 微波功率器件 SI1-XGEX 数值方法 bipolar. microwave-power-device Si_ 1-xGe_x numerical-method
  • 相关文献

参考文献7

  • 1蒋昌凌.SiGe半导体技术新进展[J].半导体情报,2000,37(3):26-31. 被引量:9
  • 2史进,黎晨,陈培毅,罗广礼.调制掺杂层在SiGe PMOSFET中的应用[J].微电子学,2002,32(4):249-252. 被引量:5
  • 3Zeljlca,et al.Base Resistance and Effective Band gap Reduction in n-p-n Si/Si1-xGex/Si HBT's with Heavy Base Doping[J].IEEE Transactions Electron Device,1996,3,43(3):457-465.
  • 4Huang,C H. et al,A Gummel-Poon Model for Single and Double Heterojunction Bipolar Transistors[J].IEEE,1989,254-257.
  • 5Subramanian S.Iyer,et al.Heterjunction Bipolar Transistors Using Si-Ge Alloys[J].IEEE Transactions on Electron Device ,1999,10,36(10):2043-2064.
  • 6戴显英,吕懿,张鹤鸣,何林,胡永贵,胡辉勇.SiGe HBT大电流密度下的基区渡越时间模型[J].微电子学,2003,33(2):86-89. 被引量:7
  • 7Rich J -S.et al.Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems[J].Solid-State Electronics. 1988,31(1):10-15.

二级参考文献17

  • 1张万荣,曾峥,罗晋生.Si/SiGe/Si双异质结晶体管异质结势垒效应(HBE)研究[J].电子学报,1996,24(11):43-47. 被引量:12
  • 2Ning T H. History and future perspective of the modern silicon bipolar transistor [J]. IEEE Transon Electron Device, 2001 ; 48 (11 ) : 2485-2491.
  • 3Hong G B, Fossum J G,Ugajin M,et al. A physical SiGe-base HBT model ior circuit simulation and design [A]. IEDM [C]. 1992. 577-580.
  • 4Kwok K H. Analytical expression of base transit time for SiGe HBTs with retrograde base profiles [J].Solid-State Electronics, 1999 ;43(2) : 275-283.
  • 5People R, Bean J C. Band alignments of inherently strained Sil-x Gex substrates [J]. Appl Phys Lett,1986; 48(8) :538-540.
  • 6Patri V S, Kumar M J. Profile design consideration for minimizing base transit time in SiGe HBT's [J].IEEE Trans on Electron Device, 1998; 45 (8) : 1725-1730.
  • 7Kay L E, Monte T W. Carlo calculation of strained and unstrained electron mobilities in Si1-x Gex using an improved ionized-imparity model [J]. J Appl Phys,1991,70(3) : 1483-1488.
  • 8People R. Indirect band-gap of coherently strained GeSi bulk alloys on〈100〉 silicon substrates [J]. Physical Review B, 1985; 32 (2):1405-1408.
  • 9Lombardi. A physically based mobility model for numerical simulation of non-planar devices [J]. IEEE Trans Comp Aid Des of Circ and Syst, 1988;7(11):1164.
  • 10Armstrong G A. Strained-Si channel heterojunction P-MOSFETs [J]. Solid-State Electronics, 1998; 42 (4): 487-489.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部