期刊文献+

基于传感器参数和目标轮廓中心的自动配准算法研究 被引量:16

Automatic registration algorithm based on sensor parameters and target's contour centroid
下载PDF
导出
摘要 通过对光电成像型反舰导弹的成像过程分析,提出了一种自动配准算法。其基本思路是将图像变换模型分解,逐步简化。可见光和红外图像配准时的变换为仿射变换。首先,利用传感器参数的调整,消除图像间的比例变化,将仿射变换简化为刚体变换;然后,依赖图像信息,用形态学边缘检测的方法求取目标的轮廓中心,以此为控制点消除图像间的平移变化,实现图像的完全配准;最后,通过观察海天线是否重合以及利用均方根误差原则,对算法的配准效果做详细评估。仿真实验表明,该算法准确、快速,配准精度满足目标识别的要求,可以较好地解决异类传感器弱小目标图像配准的难题。 Based on the analysis of the imaging process of optoelectronic imaging anti-ship missile, an automatic registration algorithm is proposed, and its basic idea is to decompose the transform model and simplify it step by step. Originally, the distortion between infrared and visible images is affine. First, by adjusting sensor parameters, the scaling change between images is eliminated and the affine transform is simplified into rigid transform. Then depending on image information, the centroid of the target's contour is computed by morphological edge detection and chosen as control point, which is used to eliminate the translational change between images and achieve the complete alignment. Finally, the registration effect is assessed by judging whether the sea-sky-lines of the two registered images are superposed and using the rule of root mean square error. The simulation experiments convince that the algorithm is accurate, fast, and can meet the precision requirement for target recognition, providing a good way for solving the difficult registration problem of small target images with different sensors.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2005年第3期354-363,共10页 Optics and Precision Engineering
基金 国防预研基金资助项目(No.51403030604JB1401)
  • 相关文献

参考文献24

  • 1BROWN L. A survey of image registration techniques[J]. ACM Computing Surveys, 1992, 24(4): 325-376.
  • 2ZITOVA B,FLUSSER J. Image registration methods:a survey[J]. Image and Vision Compu ting, 2003, 21: 977-1000.
  • 3罗诗途,王艳玲,张玘,罗飞路.车载图像跟踪系统中电子稳像算法的研究[J].光学精密工程,2005,13(1):95-103. 被引量:28
  • 4BERNEA D I. A class of algorithms for fast digital image registration[J]. IEEE Transactions on Computer, 1972, 21(2): 179-186.
  • 5徐瑞鑫,刘伟宁.基于自适应模板的实时跟踪算法[J].光学精密工程,2002,10(4):365-369. 被引量:15
  • 6DAI X L,KHORRAM S. A feature-based image registration algorithm using improved chaincode representation combined with invariant moments[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2351-2362.
  • 7REDDY B S, CHATTERJI B N. An FFT based technique for translation, rotation, and scale in variant image registration[J]. IEEE Transactions on Image Processing, 1996, 5 (8): 1266-1271.
  • 8VIOLA P A,WELLS W M. Alignment by maximization of mutual information[C]. Proc. 5th Int. Conf. Computer Vision, Bosto, MA, 1995: 16-23.
  • 9VIOLA P A,WELLS W M. Alignment by maximization of mutual information[J]. International Journal of Computer Vision, 1997, 24(2): 137-154.
  • 10COLLIGNON A, MAES F, DELAERE D,et al. Automated multimodality image registration based on information theory[C]. Proc. Information Processing in Medical Imaging Conference, Norwell, MA,Kluwer, 1995:263-274.

二级参考文献37

  • 1夏正良.数字图像处理[M].南京:东南大学出版社,1999..
  • 2[3]N C Mohanty.Image Enhancement and Recognition of Moving Ship in Cluttered Background[J].IEEE,82CH1761-6/82,1982,135-140.
  • 3[1]Can A, Stewart C V, Roysam B. et al. A feature-based robust hierarchical algorithm for registration pairs of images of the curved human retina. IEEE Trans PAMI, 2002, 24(3): 347-384
  • 4[2]Dai X, Khorram S. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Trans PAMI, 1999, 37(5): 2351-2362
  • 5[3]Horn B K P, Schunck B G. Determining optical flow. Artificial Intelligence, 1981, 17: 185-203
  • 6[4]Barron J L, Fleet D J. Systems and experiment: Performance of optical flow techniques. Int. J. Comp. Vision, 1994, 12(1): 43-77
  • 7[5]Canny J F. A computation approach to edge detection, IEEE Trans PAMI, 1986, 8(6):679-698
  • 8[7]Nagel H H. Displacement vectors derived from second-order intensity variations in image sequences. CVGIP, 1983, 25: 85-117
  • 9[8]Bruce D Lucas, Takeo Kanade. An iterative image registration technique with and application to stereo vision. Inter. Joint Conference on Artificial Intelligence,Vancouver, 1981, 674-679
  • 10Brown L G. A survey of inage registration techniques[J]. ACM Computing Surveys, 1992, 24(4):325-376.

共引文献139

同被引文献171

引证文献16

二级引证文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部