期刊文献+

一种加权支持向量机分类算法 被引量:20

A Weighted Support Vector Classification Algorithm
下载PDF
导出
摘要 提出了一种加权C-SVM分类算法,并从理论上分析了算法的性能。该算法通过引入类权重因子和样本权重因子实现了类加权和样本加权两种功能。实验结果表明,该算法可以有效地解决由类大小不均衡引发的分类错误问题以及重要样本的错分问题。 This paper proposes a weighted C-SVM algorithm and analyzes its classification performance theoretically. This weighted C-SVMintroduces weight factors for classes and samples. Experiments show that C-SVM can effectively solve the misclassification problem resulted fromthe imbalance in the number of training samples of different classes and the problem that important samples are misclassified.
出处 《计算机工程》 CAS CSCD 北大核心 2005年第12期23-25,共3页 Computer Engineering
关键词 支持向量机 加权支持向量机 分类算法 机器学习 Support vector machines Weighted support vector machines Classification algorithm Machine learning
  • 相关文献

参考文献8

  • 1Vapnik V. The Nature of Statistical Learning Theory[M].Springer-Verlag, 1995.
  • 2Cortes C, Vapnik V. Support Vector Networks[J]. Machine learning,1995, 20(3):273-297.
  • 3Scholkopf B, Smola A J. Williamson R C, et al. New Support Vector Algorithms[J]. Neural Computation, 2000, 12(5):1207-1245.
  • 4Scholkopf B, Smola A J. Learning with Kernels[M]. MIT Press, 2002.
  • 5Chew H G, Bogner R E, Lim C C. Dual-nu Support Vector Machine with Error Rate and Training Size Biasing[A]. Proceedings of the 26th International Conference on Acoustics, Speech and Signal Processing [C], IEEE, 200 1 :1269-1272.
  • 6Lin Chunfu, Wang Shengde. Fuzzy Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2 ):464-471.
  • 7Wu Xiaoyun, Rohini S. New v-Support Vector Machines and Their Sequential Minimal Optimization[A]. Proceedings of the TwentiethInternational Conference on Machine Learning[C], AAAI Press,2003:824-831.
  • 8Chih-Chang, Chih-Jen Lin. LIBSVM: a Library for Support Vector Machine[CP/OL]. http:∥www, csie.ntu.tw/~cjlin/libsvm,2001.

同被引文献112

引证文献20

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部