期刊文献+

一种多幅欠采样图像的凸集投影超分辨率重建方法 被引量:3

Project of Convex Set Method for Reconstructing A Super-resolution Image from Multiframe Undersampling Images
下载PDF
导出
摘要 介绍了一种由多幅欠采样低分辨率图像重建一幅高分辨率图像的凸集投影超分辨率重建技术。首先介绍了超分辨率空间域迭代重建方法中一个至关重要的因素——成像过程模型;其次通过介绍凸集投影的理论依据,给出了插值—模拟采样迭代超分辨率重建方法的模型和重建步骤;最后通过实验数据对算法进行了验证。 Spatial resolution of image is a critical index of image quality, and also is an important parameter in the area of image application. However, there are many factors which can lower and degenerate the quality of images in the process of capturing images. An effective solution to this problem is the super-resolution image reconstruction, that means reconstructing a high resolution (HR) image from some low resolution (LR) images, and eliminating the additive noise and blur which is caused by the size of the detector and optical at the same time. In this paper,one of project of convex set method for reconstructing a super-resolution image from multiframe undersampling images is introduced.First,a very important factor-the model of the process of imaging in spatial domain iterative method for super-resolution image reconstruction is mentioned. Next the reconstruction model and its steps are introduced through introducing the theory of project of convex set method. At last, the technique is available by experiments. The result indicates the project of convex set method for super-resolution image reconstruction has preferable effect on multiframe undersampling remote sensing images, and the technique of super-resolution image reconstruction can used in lots of fields such as remote sensing, computer vision, public security, physic imaging and so on.
机构地区 西安测绘研究所
出处 《遥感技术与应用》 CSCD 2005年第3期361-365,共5页 Remote Sensing Technology and Application
关键词 欠采样 超分辨率图像重建 空间分辨率 凸集投影 插值—模拟采样迭代 Undersampling, Super-resolution image reconstruction, Spatial resolution, Project of convex set, Spatial iterative interpolation and simulated sampling
  • 相关文献

参考文献10

  • 1Tuinstra T R, Hardie R C. High-resolution Image Reconstruction from Digital Video by Exploitation of Nonglobal Motion[J]. Opt Eng, 1999,38(5): 806~814.
  • 2Tsai R Y, Huang T S. Multffrarne Image Restoration and Registration[A]. In Advances in Computer Vision and Image Processing[C]. JAI Press, 1984,1 : 317~339.
  • 3Kim S P, Bose N K, Valenzuela H M. Recursive Reconstruction of High Resolution Image from Noisy Undersampled Multiframes[J]. IEEE Transactions on Acoustics, Speech,and Signal Process, 1990, 38(6):1013~1027.
  • 4Kim S P, Su Wenyu. Recursive High Resolution Reconstruction of Blurred Multiframe Images[J]. IEEE Transactionson Image Processing, 1993,2(4):534~539.
  • 5Sean Borman, Robert Stevenson. Spatial Resolution Enhancement of Low-resolution Image sequences a Comprehensive Review with Directions for Future Research[OL]. http://citeseer. nj. nec. com.
  • 6Shah N R, Zakhor A. Resolution Enhancement of Color Video Sequences[J]. IEEE Transactions on Image Processing,1999,8(6) :879~885.
  • 7Irani M, Peleg S. Improving Resolution by Image Registration[A]. CVGIP Graph Models Image Process[C], 1991,53(3): 231~239.
  • 8Patti A J, Sezan M I, Tekalp A M. Superresolution VideoReconstruction with Arbitrary Sampling Lattices andNonzero Aperture Time [J]. IEEE Transactions on ImageProcessing, 1997,6(8) :1064~1076.
  • 9Schultz R R, Stevenson R L. Extraction of High-ResolutionFrames from Video Sequences [J]. IEEE Transactions onImage Processing, 1996,5(6) :996~1011.
  • 10Michael Elad, Arie Feuer. Superresolution Restoration of anImage Sequence: Adaptive Filtering Approach [J]. IEEE Transactions on Image Processing, 1999,8(3): 387~395.

同被引文献36

  • 1徐宏财,向健勇,潘皓.一种改进的POCS算法的超分辨率图像重建[J].红外技术,2005,27(6):477-480. 被引量:7
  • 2袁小华,欧阳晓丽,夏德深.超分辨率图像恢复研究综述[J].地理与地理信息科学,2006,22(3):43-47. 被引量:18
  • 3范冲,龚健雅,朱建军.基于keren改进配准算法的POCS超分辨率重建[J].计算机工程与应用,2006,42(36):28-31. 被引量:10
  • 4Tuinstra T R, Hardie R C. High - resolution Image Reconstruction from digital video by exploitation of non - global motion[J]. Opt. Eng. 1999:38(5):806-814
  • 5R. Y. Tsai and T. S. Huang, Multipleframe image restoration and registration [ M ]. Advances in Computer Vision and Image Processing. Greenwich, CT: JAI Press Inc. , 1984:317 - 339
  • 6Patrick Vandewall, Sabine Susstrunk and Martin Vetterli, A frequency domain approach to registration of aliased images with application to super - resolution [ J ]. Journal on Applied Signal Processing, Special Issue on Super- resolution,2006 : 1 - 14
  • 7Kaltenbacher E. A. R. C. Hardie. High resolution infrared image reconstruction using multiple low resolution aliased frames[J]. SPIE Proc. 1996:2751:142 - 152
  • 8Nhat Nguyen, Peyman Milanfar, Gene Golub, Efficient generalized cross - validation with applications to parametric image restoration and resolution enhancement [ J ]. IEEE Transactions on Image Processing. 2001: 10(9)
  • 9Youla. D. C, Generalized image restoration by the method of alternating orthogonal projections [ J ]. IEEE Trans. Circuits Sys. CAS - 25, 1978:694 - 702
  • 10Smelyanskiy V. , Cheeseman P. , Maluf D. and Morris R. , Bayesian super- resolved surface reconstruction from images [ J ]. IEEE Conf. on Computer Vision and Pattern Recognition, 2000 : 375 - 382

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部