期刊文献+

基于模糊c均值聚类的计算机键盘用户身份认证 被引量:3

Computer keystroke verification based on fuzzy c-means clustering
下载PDF
导出
摘要 针对传统的口令认证方式在防止密码共享以及密码被盗方面的脆弱性,提出将用户名———口令认证与击键特性认证相结合的认证方式,并给出一种基于模糊c均值聚类进行击键特性认证的新方法.通过利用模糊c均值对用户的击键特性进行训练,生成用户击键特性样本;识别时将当前要求认证用户的击键特性与之进行匹配,并根据系统设定的阈值α来确定当前用户是否为合法用户.实验结果表明,此种击键特性认证方法具有较高的用户识别性能. Due to the weakness of traditional password systems on deterring password sharing and stolen, this paper describes a new method of fuzzy c-means clustering to enhance user authentication based on the keystroke authentication studied by researchers. Fuzzy c-means is used to train the keystroke dynamics of users when entering passwords on a keyboard. After being trained, the system identifies whether a user is a legal user by comparing the current user's keystroke dynamics with his keystroke profile values within a (certain) precision threshold α. The experiment results indicate this approach has a good discerning ability.
作者 许哲 郭海锋
出处 《延边大学学报(自然科学版)》 CAS 2005年第2期130-134,共5页 Journal of Yanbian University(Natural Science Edition)
关键词 模糊C均值聚类 击键特征 身份认证 fuzzy c-means clustering keystroke identity authentication
  • 相关文献

参考文献11

  • 1[1]Miller B. Vital signs of identity[J]. IEEE Spectrum, 1994,31(2):22-30.
  • 2刘学军,陈松灿,彭宏京.基于支持向量机的计算机键盘用户身份验真[J].计算机研究与发展,2002,39(9):1082-1086. 被引量:26
  • 3曲维光,宋如顺.基于用户击键特征识别的用户认证系统[J].计算机工程与应用,2002,38(16):69-70. 被引量:8
  • 4朱明,周津,王继康.基于击键特征的用户身份认证新方法[J].计算机工程,2002,28(10):138-139. 被引量:13
  • 5[5]John A Robinson, Vicky M Liang, J A Michael Chambers, Christine L MacKenzie. Computer User Verification Using Login String Keystroke Dynamics[J]. IEEE Transactions On Systems, Man, and Cybernetics, 1998,28(2):236-241.
  • 6[6]Fabian Monrose, Aviel D Rubin. Keystroke dynamics as a biometric for authentication[J]. Future Generation Computer Systems, 2000,16:351-359.
  • 7[7]Saleh Bleha, Charles Slivinsky, Bassam Hussien. Computer-Access Security Systems Using Keystroke Dynamics[J]. IEEE Transactions On Pattern Analysis and Machine Inetlligence, 1990,12(12):1217-1222.
  • 8[8]Willem G de Ru, Jan H P Eloff. Enhanced password authentication through fuzzy logic[J]. IEEE Expert, 1997,12(6):38-45.
  • 9[9]Francesco Bergadano, Daniele Gunetti, Claudia Picardi University of Torino. User Authentication through Keystroke Dynamics[J]. ACM Transactions on Information and System Security, 2002,5(4):367-397.
  • 10[10]Yu Enzhe, Cho Sungzoon. GA-SVM Wrapper Approach for Feature Subset Selection in Keystroke Dynamics Identity Verifcation[J]. IEEE, 2003(3):2253-2257.

二级参考文献8

  • 1罗莉,罗强,胡守仁.前馈多层神经网络的一种优质高效学习算法[J].计算机研究与发展,1997,34(2):107-112. 被引量:38
  • 2胡守仁.神经网络导论[M].北京:国防科大出版社,1995.113.
  • 3[1]Monrose F,Rubin A D.Keystroke Dynamics as a Biometric for Au thentication.Future Generation Computing Systems (FGCS) Journal:Security on the Web (Special Issue),2000-03:341-345
  • 4[2]Monrose F,Reiter M K,Wetzel S.Password Hardening Based on Keystroke Dynamics.In:Proceedings of the 6th ACM Conference on Computer and Communication Security, 1999-11:26-32
  • 5[3]Robinson J A,Liang V M,Chambers J A M,et al.Computer User Verification Using Login String Keystroke Dynamics. IEEE Transactions on Systems, Ma n,and Cybernetics,part A, 1998,28(2):63-70
  • 6宋如顺 钱钢 等.网络系统安全技术[M].东南大学出版社,2000..
  • 7赵海波,李建华,杨宇航.网络入侵智能化实时检测系统[J].上海交通大学学报,1999,33(1):76-79. 被引量:37
  • 8金忠,胡钟山,杨静宇.基于BP神经网络的人脸识别方法[J].计算机研究与发展,1999,36(3):274-277. 被引量:33

共引文献37

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部