期刊文献+

耕种对沙地土壤全磷空间变异性的影响 被引量:10

Influence of cultivation on spatial variability of soil total phosphorus in sandy land.
下载PDF
导出
摘要 利用经典统计学和地统计学相结合的方法,以科尔沁沙地东南缘的丘间低地为例,分析了农业耕种对沙地土壤全磷空间变异性的影响.结果表明,草地开垦8年后的耕地同未开垦的草地相比,表层和亚表层土壤全磷量均有明显增加(P<0.05);两层土壤全磷贮量增加7.64%,约增加25.71kg/hm2.耕地同草地相比,土壤全磷空间结构和格局存在明显差异.耕地表层表现为一种随机上下波动的空间分布格局,而草地表现为相对均一的空间分布格局.亚表层耕地同草地相比,基台值、结构方差和变程明显偏大,结构异质性和空间依赖性较强,而随机性较弱的空间分布格局.分数维进一步说明耕地与草地土壤全磷空间变异性的差异.克立格制图直观地反映2种土地利用方式下土壤全磷的空间结构特征.为此,认为耕种易导致沙地土壤退化,退耕还草有利于维持脆弱沙地生态系统的稳定性. The influence of cultivation on spatial variability of soil total phosphorus (STP) in sandy land was studied, utilizing the low land of southeastern Keerqin Sandy Lands, and the combined technique of classical statistics and geostatistics. STP amounts of surface and subsurface all increased obviously (P<0.05) after the grassland was brought under cultivation for 8 years compared with the grassland not cultivated; the stored amounts of STP of both layers increased 7.64% and 25.71 kg/hm2; and the spatial structure and pattern of STP were different obviously. The spatial distribution of STP of surface layer of grassland was uniform pattern while that of cultivated land was stochastic and fluctuant pattern. Compared with grassland, the sill value, structure variance and change range of subsurface cultivated land were larger obviously with stronger structure heterogeneity and spatial dependence. The spatial distribution pattern of weaker randomness and fractional dimension further explained the difference of spatial variability of STP between cultivated land and grassland. Kriging maps also directly the spatial structure character of STP under two kinds of land utilization pattern. It was considered that cultivation could easily lead to the degradation of sandy soil, and the conversion of cultivated land to grassland was favorable to maintain the ecosystem stability of frazil sandy land.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2005年第B06期85-88,共4页 China Environmental Science
基金 国家科技攻关计划项目(2002BA517A11-5) 中国科学院知识创新工程重要方向(KZCX3-SW-418) 内蒙古自治区"十五"科技攻关课题(20030701)
关键词 科尔沁沙地 土壤全磷 农业耕种 空间变异性 地统计学 Keerqin Sandy Lands soil total phosphorus cultivation spatial variability geostatistics
  • 相关文献

参考文献10

  • 1Vitousek P M. Litterfall, nutrient cycling and nutrient limitation in tropical forests[J]. Ecology, 1984,65(1):285-298.
  • 2DeBano L, KIopatek J. Phosphorus dynamics of pinyon-juniper soils following simulated burning[J]. Soil Science Society of America Journal,1988,52(1):271-277.
  • 3Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems[J]. Ecology, 1996,77(2):364-374.
  • 4Lawrence D, Schlesinger W H. Changes in the distribution of soil phosphorus during 200 years of shifting cultivation[J].Ecology, 2001,82(10):2769-2780.
  • 5N.K.HOWES,S.E.SMITH,ZHUYONGGUAN.Phosphorus Uptake and Utilisation Efficiencies of Different Wheat Cultivars Based on a Sand-Culture Screening System[J].Pedosphere,2002,12(4):329-337. 被引量:13
  • 6Sharpley A N. Phosphorus cycling in unfertilized and fertilized agricultural soils[J].Soil Science Society America Journal,1985,49(7):905-911.
  • 7Schwab A P, Kulyingong S. Changes in phosphate activities and availability indexes with depth after 40 years of fertilization [J].Soil Science, 1989,147(2):179-186.
  • 8陈伏生,曾德慧,陈广生,范志平.开垦对草甸土有机碳的影响[J].土壤通报,2004,35(4):413-419. 被引量:24
  • 9陈伏生,曾德慧,陈广生.土地利用变化对沙地土壤全氮空间分布格局的影响[J].应用生态学报,2004,15(6):953-957. 被引量:31
  • 10中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983.55-108.

二级参考文献52

  • 1Richard A.Houghton,罗天祥.陆地生态系统从碳源到碳汇的转变[J].人类环境杂志,1996,25(4):267-272. 被引量:4
  • 2[2]Harrison K, Broecker W. A strategy for estimating the impact of CO2 fertilization on soil carbon storage[J]. Globel Biogeochemical Cycles, 1993, 7(1): 69-80.
  • 3[3]Houghton R A, Hackler J L, Lawrence K T. The US carbon budget: contributions from land-use change[J]. Science, 1999, 285: 574-578.
  • 4[4]IGBP Terrestrial Carbon Woring Group. The terrestrial carbon cycle: Implications for the Kyoto protocol[J]. Science, 1998, 280:1393-1394.
  • 5[5]Nadelhoffer K J. A global trend in belowground carbon allocation: comment[J]. Ecology, 1996, 77, 1750.
  • 6[6]Mooney H A. The carbon balance of plants[J]. Annual Review of Ecology and Systematics, 1972, 3: 315-346.
  • 7[9]McConnell S G, Quinn M L. Soil productivity of four land use systems in southeastern Montana[J]. Soil Science Society of America Journal, 1988, 52: 500-506.
  • 8[10]Sampson R N, Apps M, Brown S, et al. Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2[J]. 1993, Water, Air, and Soil Pollution, 70:3-15.
  • 9[12]Aguilar R, Kelly E F, Heil R D. Effects of cultivation on soils in northern Great Plains rangeland[J]. Soil Science Society of America Journal, 1988, 52: 1081-1085.
  • 10[13]Anderson D W, Coleman D C. The dynamics of organic matter in grassland soil[J]. Journal of Soil and Water Conservation, 1985, 40: 211-216.

共引文献528

同被引文献208

引证文献10

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部