摘要
Results from fatigue experiments of cross-laminated steel cord-rubber composites (SCRC) indicate that fatigue damage life can be categorized into three regimes. In terms of fatigue modes, a subregional fatigue model is developed to describe the damages evolution of SCRC under fatigue loads. Firstly, finite element analysis is introduced to determine interply stress distribution of the specimen. Then, based on the experimental fatigue data, subregional models are introduced to simulate relations between maximum strain, effective stiffness, delamination shear stress and fatigue cycles. Relations between crack density, delamination length growth rate, macro crack density and cycles are modeled by two semi-empirical models. A reasonable prediction result was achieved by the current model, where model parameters can be determined by basic outputs of fatigue testing.
Results from fatigue experiments of cross-laminated steel cord-rubber composites (SCRC) indicate that fatigue damage life can be categorized into three regimes. In terms of fatigue modes, a subregional fatigue model is developed to describe the damages evolution of SCRC under fatigue loads. Firstly, finite element analysis is introduced to determine interply stress distribution of the specimen. Then, based on the experimental fatigue data, subregional models are introduced to simulate relations between maximum strain, effective stiffness, delamination shear stress and fatigue cycles. Relations between crack density, delamination length growth rate, macro crack density and cycles are modeled by two semi-empirical models. A reasonable prediction result was achieved by the current model, where model parameters can be determined by basic outputs of fatigue testing.
基金
Sponsored by the Science Foundation Committee of Heilongjiang Province(Grant No.A0309).