期刊文献+

硒化镉发光量子点的制备及其在有机发光器件中的应用(英文) 被引量:9

Synthesis and Applications of Luminescent CdSe Quantum Dots for OLEDs
下载PDF
导出
摘要 硒化镉量子点具有随粒径尺寸改变,而产生发光波长调变的特性,目前已被广泛研究。本研究是由化学溶胶法合成不同粒径尺寸的核壳型CdSe/ZnS硒化镉量子点,其表面包覆十六烷基胺,避免分子团聚现象。在由硒化镉成核温度的控制,成功地制备一系列具有各种尺寸粒径的核壳型硒化镉量子点(2~6nm)。本研究也合成了含有纳米金粒子于核壳型硒化镉量子点,实验结果发现:硒化镉发光效率明显的提高。在有机发光器件的应用方面,将发光波长为505nm核壳型CdSe/ZnS量子点掺入溶有发光波长为570nm铱化合物的氯仿溶液时,其溶液的光致发光光谱表明,原量子点的发光特性消失,只有铱化合物的发光依然存在,且其发光强度呈现明显增强趋势,我们推测此现象源自于量子点到铱化合物能量转移的机制。我们也以含有核壳型硒化镉量子点的铱化合物与PVK混合材料为发光层,成功的制作发光二极管器件,器件的发光效率因核壳型硒化镉的掺杂,明显提高2倍多。 We have successfully synthesized high-quality CdSe/ZnS and Au/CdSe/ZnS quantum dots(QDs) by simple chemical colloid methods. We try to explore the possibility of PL intensity enhancement of CdSe QDs in presence of Au nanoparticles (NPs). Due to the existence of surface plasma excitation of core Au, we have observed a great enhanced PL intensity in the core-shell NPs of Au/CdSe/ZnS as compared to CdSe/ZnS NPs. Here, the optimal fraction of Au NPs incorporation into CdSe/ZnS NPs was found to be 0.1 mol% Au NPs, which shows the highest PL intensity. We also fabricated a high efficiency organic electroluminescent device (OLED) using CdSe/ZnS and Au/CdSe/ZnS with phosphorescent Ir-complex as light-emitting materials. The quantum efficiencies of OLEDs were (enhanced) about 2 times as compared to blank device.
出处 《发光学报》 EI CAS CSCD 北大核心 2005年第3期321-326,共6页 Chinese Journal of Luminescence
基金 台湾科会基金(NSC91-2816-M 009-002-6) 台湾联合大学系统(UST-CNST200纳米整合计划基金)资助项目
关键词 化学溶胶法 核壳型硒化镉量子点 发光二极管器件 磷光铱(Ⅲ)化合物 chemical colloid methods core-shell type CdSe quantum dots electroluminescent device phosphores- (cent Ir-complex)
  • 相关文献

参考文献12

  • 1Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281:2013-2016.
  • 2Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281:2016-2018.
  • 3Mattoussi H, Radzilowski L, Dabbousi B, et al. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals [J]. J. Appl. Phys., 1998, 83:7965-7974.
  • 4Coe S, Woo W K, Bawendi M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420:800-803.
  • 5Tsutsui T. Applied Physics: A light-emitting sandwich filling [J]. Nature, 2002, 420:752-755.
  • 6Honma I, Sano T, Komiyama H. Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in Ag-CdS hybrid particles [J]. J. Phys. Chem., 1993, 97:6692-6695.
  • 7Oldfield G, Ung T, Mulvaney P. Au@SnO2 core-shell nanocapacitors [J]. Adv. Mater., 2000, 12:1519-1522.
  • 8Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystal [J]. J. Am. Chem. Soc., 1993, 115:8706-8715.
  • 9Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor [J]. J. Am. Chem. Soc., 2001, 123:183-184.
  • 10Nayak R, Galsworthy J, Dobson P, et al. Synthesis of gold-cadmiumn selenide co-colloids [J]. J. Mater. Res., 1998, 13:905-908.

同被引文献79

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部