期刊文献+

自相似网络业务流量的研究与实现 被引量:14

On study and implementation of self-similar network traffic
下载PDF
导出
摘要 为了准确测试和评估网络交换设备及其调度算法的性能,一个能够真实反映实际网络业务流量特点的业务流量产生系统是十分必要的。近年来通过对大量网络业务流量的测量和分析,人们认识到网络业务流量呈现为长相关、自相似的特性,而非泊松过程。将这一特性和现有的业务流量描述模型相结合,利用具有重尾特性的概率分布函数:Pareto分布和截尾重尾分布,构造了在宏观上表现为自相似特性的业务流量模型。针对路由交换机构调度算法的性能测试的实际需要,建立了一个可用于软件测试的网络业务流量产生系统。 To evaluate accurately the performance of the network switching equipment and the scheduling algorithm, it was very important to use a simulated network traffic which represents the major characteristics of real network. The study and analysis on the network traffic in recent years showed the traffic distribution was long-rang-dependent and self-similar, not Poisson process. Combining the modern statistical result on network traffic with the existing traffic models, a practical traffic model was constructed. Based on Pareto distribution and truncated power-tail distribution the model presents nice self-similar property in macro-scale. A practical network traffic generating system is built for evaluating the performance of switch fabric and its scheduling algorithm.
出处 《通信学报》 EI CSCD 北大核心 2005年第6期112-117,共6页 Journal on Communications
关键词 网络通信 业务流量 ON/OFF模型 自相似 重尾分布 network communication traffic ON/OFF model self-similar power-tail distribution
  • 相关文献

参考文献9

  • 1PAXSON V, FLOYD S. Wide-area traffic: the failure of Poisson modeling[J]. IEEE/ACM Transactions on Networking, 1995, 3(3):226-244.
  • 2http://www.caida.org/analysis/AIX/plen_hist/index.xml, Jun 14, 2002[EB/OL].
  • 3HLAVACS H, KOTSIS G, STEINKELLER C. Traffic Source Modeling[R]. University of Vienna: Technical Report No. TR-99101,Institute for Appl Comp Science and Inf Systems.
  • 4WILLINGER W, TAQQU M S, SHERMAN R, et al. Self-similarity through high-variability: statistical analysis of ethernet LAN traffic at the source level[J]. IEEE/ACM Transactions on Networking, 1997,5(1): 71-86.
  • 5POPESCU A Traffic self-similarity[A]. The IEEE International Conference on Telecommunications, ICT2001 [C]. Bucharest, Romania,2001.
  • 6GREINER M, JOBMANN M, LIPSKY L. The importance of power-tail distributions for modeling queuing systems[J]. Operations Research, 1999, 47(2):313-326.
  • 7HATEM J E. Comparison of Buffer Usage Utilizing Single and Multiple Servers in Network Systems with Power-Tail Distribution[D].University of Connecticut, Department of Computer Science and Engineering, Storrs, 1997.
  • 8ROSARIO G, GARROPPO, STEFANO G. On the implications of the OFF periods distribution in two-state traffic models[J]. IEEE Communications Letters, 1999, 3(7):220-222.
  • 9ULANOVS P, PETERSSONS E. Modeling methods of self-similar traffic for network performance evaluation[A]. Scientific Proceedings of Riga Technical University, Series 7, Telecommunications and Electronics[C]. 2002.86-96.

同被引文献141

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部