期刊文献+

遗传算法的基因定位算子 被引量:5

Gene-orientation operator for genetic algorithm
下载PDF
导出
摘要 针对遗传算法局部搜索能力弱,求解精度不高的缺陷提出了一个基因定位算子.该算子的思路是进化一定代数(L)后通过对最优的若干个(N)染色体基因位从高位到低位逐次进行比较,如果当前的基因位都相同时便把该基因位确定下来,以后的交叉、变异操作都不让该基因位参考,随着算法的进行,染色体基因便从高位到底位逐渐地确定下来.基次,通过在基因定位过程中引入模拟退火思想和小生境技术等局部搜索能力的算法,提高该算子的全局优化能力.最后,通过几个非常容易陷入局部最优的测试函数测试表明几乎所有的峰值都得到了理论值. <Abstrcat> A gene-orientation operator is proposed to solve the problem of weak ability and low precision in local searching in genetic algorithm.The operator makes a comparison among the several best (N) chromosomes from the high position to the low position after several generations (L).If all the genes on the current position happen to be the same,this gene is locked and not allowed to take part in the genetic operations such as crossover and mutation.In the process of algorithm,every gene of the chromosome will be determined gradually from the high position to the low position.Some algorithms with strong ability in local searching such as the Simulating Anneal and the Niche technology in the process of gene orientation are also used to improve the global optimizing ability of the operator.Finally,several test functions which are easy to fall into the local optimization are implemented to show that almost all the extremes reach their theoretical values.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第3期491-494,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60272099).
关键词 遗传算法 小生境技术 函数优化 基因定位 genetic algorithm niche technology function optimization gene orientation
  • 相关文献

参考文献4

二级参考文献18

  • 1[1]Belew R K, Vose M D. Foundation of Genetic Algorithms, 4. San Francisco: Morgan Kaufmann Publishers Inc, 1997
  • 2[2]Melanie M. An Introduction to Genetic Algorithms. Cambridge: The MIT Press, 1996
  • 3[3]Goldberg D E. Simple genetic algorithm and the minimal deceptive problem. In: Davis L, ed. Genetic Algorithms and Simulatied Annealing. San Mateo: Morgan Kaufman, 1987. 74~88
  • 4[4]Das R, Whitley D. The only challenging problems are deceptive:Global search by solving order-1 hyperplanes. In: Proceedings of ICGA. 1991. 166~173
  • 5[5]Whitley D. Fundamental principles of deception in genetic search. In: Rawlins G, ed. Foundations of Genetic Algorithms. San Mateo: Morgan Kaufmann, 1991. 221~241
  • 6[6]Liepins G E, Vose M D. Representational issues in genetic optimization. Journal of Experimental Theory and Instruments, 1990, 2: 4~30
  • 7[7]Goldberg D E, Korb B, Deb K, et al. Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 1989, 3: 493~530
  • 8[8]Deb K A, Goldberg D E. Analyzing deception in trap functions. IlliGAL Report No 91009. Urbana: University of Illinois Genetic Algorithms Laboratory, 1991
  • 9[1]Richard K Belew, Michael D Vose. Foundations of Genetic Algorithms 4. San Francisco, Calif: Morgan Kaufmann Publishers, Inc., 1997
  • 10[2]Melanie Mitchell. An Introduction to Genetic Algorithms. Cambridge, Mass: The MIT Press, 1996

共引文献48

同被引文献66

引证文献5

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部