期刊文献+

热辐射对富氧扩散燃烧火焰结构和氮氧化物生成的影响 被引量:17

The Impact of Thermal Radiation on the Flame Structure and the Formation of NO_x during an Oxygen enriched Diffusion Combustion Process
下载PDF
导出
摘要 揭示了富氧燃烧过程中的火焰结构和氮氧化物生成机理,针对富氧火焰特性探讨NOx的抑制机理。本文以对向流扩散火焰为对象,利用基于详细的基元反应动力学模型的燃烧数值解析方法研究了热辐射对富氧空气(氧浓度为60%)/甲烷扩散火焰中火焰结构和氮氧化物生成的影响。结果表明,在速度梯度较大时,辐射对燃烧特性的影响可以忽视,当速度梯度κ减小到约20s-1以下,辐射的影响逐渐明显,需要考虑辐射项;同时发现随着速度梯度的减少,总的NO质量生成速率随着速度梯度的下降逐渐增大,在κ≈33.3s-1时达到峰值后又开始下降,直至熄火。 The flame structure and NOx generation mechanism during an oxygen-enriched combustion process are expounded. In connection with the oxygen-enriched flame characteristics an exploratory study was conducted of the mechanism of NOx suppression. With the counterflow diffusion flame serving as an object of investigation and by the use of a detailed elementary-reaction kinetics model-based numerical analysis method a study was conducted of the influence of thermal radiation on the flame structure and NOx formation in a methane/oxygen-enriched (oxygen concentration 60%) air diffusion flame. The results of the study indicate that when the velocity gradient is relatively great, the impact of radiation on the combustion characteristics can be neglected. However, when the velocity gradient is reduced to about less than 20 s-1 the influence of the radiation gradually becomes evident, thus necessitating the consideration of the radiation item. Meanwhile, it has been found that with a decrease in the velocity gradient the total NO mass generation rate will gradually increase with a reduction in the velocity gradient. The total NO mass generation rate will reach a peak value when the velocity gradient equals to about 33.3 s-1 and then begin to decrease until a flame extinction takes place.
出处 《热能动力工程》 EI CAS CSCD 北大核心 2005年第3期275-279,共5页 Journal of Engineering for Thermal Energy and Power
基金 广东省自然科学基金资助项目(032703) 广州市科技计划基金资助项目(2003JE-C0181)
关键词 对向流扩散火焰 辐射 速度梯度 火焰结构 氮氧化物 数值分析 counterflow diffusion flame, radiation, velocity gradient, flame structure, NO x , numerical analysis
  • 相关文献

参考文献18

  • 1黄飞,林向东,陈新海,尤国英.膜法富氧试验及富氧燃烧[J].锅炉技术,2000,31(3):21-23. 被引量:13
  • 2张科峰.膜法富氧助燃技术提高加热炉热效率[J].化工科技,2000,8(6):39-42. 被引量:14
  • 3汪全青.富氧和全氧燃烧的优越性[J].中国玻璃,2000(3):41-42. 被引量:16
  • 4BELTRAME A, PORSHNEV P.Soot and NO formation in methane-oxygen enriched diffussion flames[J]. Combustion and Flame, 2001,124: 295-310.
  • 5ZHAO D, YAMASHITA H. A numerical study on flame structure and NOx formation of oxygen-enriched air/methane counterflow diffusion flame[A].Proceedings of 3rd International Symposium on Advanced Energy Conversion Systems and Related Technologies[C].Nagoya Japan:Nagoya Unit, 2001.300-308.
  • 6赵黛青,冯耀勋,刘庆才,山下博史.燃料稀释对富氧空气/甲烷扩散火焰中氮氧化物生成的影响[J].热能动力工程,2004,19(4):367-371. 被引量:11
  • 7PLATT J A, TIEN J S. Chemical and physical processes in combustion[A].1990 Fall Technical Meeting[C].Amherst MASS:Eastern Section of the Combustion Institute, 1998.1615-1620.
  • 8GUO H Y, MARUTA K, NIIOKA T, et al. Radiation extinction limit of counterflow premixed lean methane-air flames[J]. Combustion and Flame, 1997,109: 639-646.
  • 9TSUJI H. Counterflow diffusion flames[J]. Prog Ener Combust Sci,1992,8: 93-119.
  • 10YAMASHITA H. Numerical study on NOx production of transitional fuel jet diffusion flame[J]. Transactions of the JSME, 1999, 65: 630-635.

二级参考文献17

  • 1沈光林,李新培.膜法富氧用于助燃的理论研究[J].膜科学与技术,1994,14(3):47-53. 被引量:18
  • 2金国范 林德.“A”型氧气烧嘴系统的开发和应用[J].节能管理与节能技术.冶金工业部节能情报网,1990,(7).
  • 3张欣.富氧燃烧及其应用[J].工厂动力,1990,(4).
  • 4舒世安.富氧燃烧技术应用浅析[J].工厂动力,1990,(4).
  • 5[5]BELTRAME A, PORSHNEV P. Soot and NO formation in methane-oxygen enriched diffussion flames[J]. Combustion and Flame, 2001,124:295-310.
  • 6[6]ZHAO D, YAMASHITA H. A numerical study on flame structure and NOx formation of oxygen-enriched air/methane counterflow diffusion flame[A]. Proceedings of 3rd International Symposium on Advanced Energy Conversion Systems and Related Technologyies[C], Japan: 2001.300-308.
  • 7[7]TSUJI H. Counterflow diffusion flames[J]. Prog Ener Combust Sci, 1992,8:93-119.
  • 8[8]YAMASHITA H. Numerical study on NOx production of transitional fuel jet diffusion flame[J]. Transactions of the JSME, 1999,65:630-635.
  • 9[9]KEE R J, RUPLEY F M, MILELLER J A. CHEMKIN-Ⅱ:A fortran chemical package for the analysis of gas-phase chemical kinetics[R]. San Diego: Sandia National Lab, Report No. SAND89-8009, 1989.
  • 10[10]SMOOKE M D, Reduced Kinetic Mechanisms and asymptotic approximations for methane-air flames[M]. Germany,Berlin: Springer Verlag, 1991.

共引文献38

同被引文献222

引证文献17

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部