期刊文献+

智能交通系统中路径诱导算法研究进展 被引量:33

New trends in route guidance algorithm research of intelligent transportation system
下载PDF
导出
摘要 针对智能交通系统的路径诱导问题,提出了按诱导系统的目标是系统路径或单车路径、所依据的信息性质是静态或动态以及路径生成方式是分散型的还是中心型的三种分类方式.详细讨论了路径诱导算法的实时性、动态路径诱导和交通控制与诱导一体化集成这三个在路径诱导系统研究中的关键问题,并分析了它们最新的研究进展.结合分析结果与路径诱导系统的实际应用前景,给出了基于出行者心理特征模型、多目标优化、路段交通量预测、提供更多智能化服务以及基于分布式人工智能框架模型等进一步研究未来路径诱导算法的重要研究方向. For solving the route guidance problem in intelligent transportation system (ITS), three classifications of route guidance systems were proposed according to the aim of route guidance system, the character of steady or dynamic state information and the available mode of route guidance. The key problems in the three main research fields including algorithm real time efficiency, dynamic route guidance algorithm and integration with traffic control system in route guidance system and their up-to-date study developments were analyzed. Combining analysis results and the possibility of practical application of route guidance system, several important problems in future research on route guidance algorithm were presented based on traveller psychology model, multi-index optimization, traffic flow forecast, more intelligent route guidance service and an algorithm model of distributed artificial intelligence.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第6期819-825,共7页 Journal of Zhejiang University:Engineering Science
基金 浙江省自然科学基金资助项目(601119).
关键词 智能交通系统 路径诱导系统 最短路径问题 交通控制 分布式人工智能 Algorithms Artificial intelligence Integration Optimization
  • 相关文献

参考文献39

  • 1赵亦林 谭国真译.车辆定位与导航系统[M].北京:电子工业出版社,1999..
  • 2欧海涛,张文渊,张卫东,许晓鸣.城市交通控制研究的新发展[J].信息与控制,2000,29(5):441-453. 被引量:29
  • 3KAUFMAN D E. A mixed integer linear programming model for dynamic route guidance[J]. Transportation Research B, 1998, 32(6): 431-440.
  • 4ZHAN F B, NOON C E. Shortest path Algorithms: An Evaluation using real road networks[J]. Transportation Science, 1998, 32(1): 65-73.
  • 5ZHAN F B. Three shortest path algorithms on real road networks: Date structure and procedures[J]. Journal of Geographic and Decision Analysis, 1997, 1(1): 69-82.
  • 6CHOU Y, ROMEIJN E, SMITH R L. Approximating shortest paths in large-scale networks with an application to ITS[J]. INFORMS Journal of Computing, 1998, 10(2): 163-179.
  • 7JAGADEESH G R, SHRINKTHAN T, QUEK K H. Heuristic Techniques for Accelerating Hierarchical Routing on Road Networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 301-309.
  • 8CHANG W A, RAMAKRISHNA R S. A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 566-579.
  • 9AHN C W, RAMAKRISHNA R S, KANG C G, et al. Shortest path routing algorithm using Hopfield neural network[J]. Electronics Letters, 2001, 37(19): 1176-1178.
  • 10HUANG Y W, NING J, RUNDENSTEINER E A. A hierarchical path view model for path finding in Intelligent Transportation Systems[J]. GeoInformatica, 1997, 1(2): 125-159.

二级参考文献29

共引文献195

同被引文献237

引证文献33

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部