期刊文献+

小波域联合概率分布模型与Bayesian图像去噪 被引量:1

Bayesian Image Denoising Based on Joint Probability Distribution Model in Wavelet Domain
下载PDF
导出
摘要 基于小波分解的图像小波系数在层内和层间解相关而相互依存的客观现实,提出了一个联合层内和层间两方向系数的非高斯联合概率分布模型.以此模型作为先验分布,在Bayesian估计理论的框架下,导出小波系数闭式的最大后验(MAP)估计公式,并用高斯噪声污染的典型图像进行了实验.结果显示,由该估计公式计算得到的去噪图像不仅有较少的均方误差(MSE),还具有保护和增强边缘的能力. Based on the inter-and intra-scale coefficients' decorrelating but also the dependent properties of wavelet-based decomposed image, a new local non-Gaussian joint probability distribution model is proposed, and following that, a new closed maximum a posteriori(MAP) estimating formula is derived under the Bayesian estimation theory by using this model as the prior distribution model. At last, several numerical examples are given, the experiments show the denoised images have not only a lower mean-square error(MSE) ,but also a better ability of edge preservation and enhancement.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第4期356-359,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(60472110)
关键词 图像去噪 小波系数模型 概率分布 image denoising wavelet coefficients model probability distribution
  • 相关文献

参考文献8

  • 1Coifman R R, Donoho D L. Translation-invariant denoising[M]. Berlin:Springer-Verlag,1995.125-150.
  • 2Simoncelli E P, Freeman W T, Adelson E H, et al. Shiftable multiscale transforms[J]. IEEE Trans Information Theory, 1992,38(2):587-607.
  • 3Mallat S. A wavelet tour of signal processing[M]. New York: Academic Press, 1998.
  • 4Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov model[J]. IEEE Trans Image Processing, 1998,46(4):886-902.
  • 5Fan G L, Xia X G. Image denoising using a local conte xtual hidden Markov model in the wavelet domain[J]. IEEE Signal Processing Letters, 2001,8(5): 125-128.
  • 6Mihcak M K, Kozintsev I, Ramchandran K. Low-complexity image denoising based on statistical modeling of wavelet coefficients[J]. IEEE Signal Processing Letters,1999,6(12): 300-303.
  • 7Liu J, Moulin P. Image denoising based on scale-space mixture modeling for wavelet coefficients[Z]. International Conference on Image Processing, Kobe, Japan, 1999.
  • 8Malfait M, Roose D. Wavelet-based image denoising using a Markov random field a priori model[J]. IEEE Trans Image Processing, 1997, 6(4): 549-565.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部