期刊文献+

ANN在焊接接头抗弯强度预测中的应用 被引量:3

Application of artificial neural network method in prediction of bend strength of welded joint
下载PDF
导出
摘要 采用Ni-Fe-C合金作为填充金属,获得了基于TIG焊的WC-30Co/45钢焊接接头.采用人工神经网络(ANN)方法,对WC-30Co/Ni-Fe-C/45钢TIG焊过程中输入参数(焊接参数和填充金属成分)和力学抗弯强度之间的关系进行预测和分析.训练数据经过数据标准化处理,送入基于反向传播的多层前馈神经网络模型训练.并采用均方误差对模型进行误差分析.并采用训练的网络对焊接参数和填充金属成分与抗弯强度之间的关系进行预测.最后通过试验对预测结果进行了误差分析.结果表明,当采用碳含量(质量分数)0.6%或0.8%;Ni/Fe比为1.9~2.7的合金作为填充金属时可以获得较高的抗弯强度;构建的基于反向传播算法的ANN模型适用于评价WC-30Co/45钢TIG焊接头的抗弯强度,优于传统方法. Good WC-30Co/45 steel TIG(tungsten inert gas) welded joint could be obtained using Ni-Fe-C alloy as filler metal.However,Ni-Fe-C filler metal was usually developed with the 'trial-and-error' method,which wasted a lot of time and efforts.A model was developed for analysis and prediction of correlation between input parameters(welding parameter and content of filler metal) and bend strength in WC-30Co/Ni-Fe-C/45 steel TIG welding process using artificial neural network(ANN).The model was based on multiplayer back propagation neural network and trained with data sets from experiments followed by data normalization.Mean-squared-error of this model was analyzed.The bend strength was further predicted using the trained ANN model.The results showed that when joints welded with filler metals contaning(0.6wt.%) or 0.8wt.%C,and Ni/Fe ratio in the range from 1.9 to 2.7,were obtained,and higher bend strength could be reached.The ANN model could be well used to estimate the effect of parameters on bend strength of WC-30Co/Ni-Fe-C/45 steel TIG welded joints,superior to conventional techniques.
出处 《焊接学报》 EI CAS CSCD 北大核心 2005年第5期41-45,共5页 Transactions of The China Welding Institution
关键词 Ni/Fe比 人工神经网络模型 抗弯强度 WC-CO TIG焊 Ni/Fe ratio artificial neural network model bend strength WC-Co tungsten inert gas welding
  • 相关文献

参考文献8

  • 1赵秀娟,杨德新,田头孝介,高泽幸治,山森英明,鸭田秀一.YG30硬质合金与45钢TIG焊接头组织中η相[J].焊接学报,2003,24(3):35-38. 被引量:25
  • 2Shuichi Goto, Yukinari Kanda, Kohichi Sugimoto, et al. Effect of grinding on bending fracture strength of WC-Co alloy [ J ]. Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995,61 (9): 1927 - 1932.
  • 3Yasuki Miyakoshi, Kohji Takazawa, Kohsuke Tagashira, et al.Microstructure and strength of interface in joint of WC-40mass% Co alloy/carbon steel [ J]. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44(10): 958 -962.
  • 4Yasuki Miyakoshi, Kohji Takazawa, Kohsuke Tagashira, et al.Effect of carbon addition on mechanical properties of WC-37mass% Fe alloy[ J]. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002, 49 ( 3 ):183 - 188.
  • 5Hidekazu Doi, Fumihiro Ueda, Yoshio Fujiwara, et al. Effect of boundaries on strength and toughness of cemented carbides [ A ].Nuclear Technology[ C]. 1975. 235 -248 .
  • 6王宸煜,王敏,董溯攀.人工神经网络在镀锌钢板点焊性能估测中的应用[J].上海交通大学学报,2001,35(3):420-423. 被引量:7
  • 7Basheer I A, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application [ J ]. Journal of Microbiological Methods, 2000, 43(1): 3 -31.
  • 8Malinov S, Sha W, McKeown J J. Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural network [ J ]. Computational Materials Science,2001, 21(3): 375 -394.

二级参考文献3

共引文献30

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部