期刊文献+

大变形柔性梁系统的绝对坐标方法 被引量:17

Application of Absolute Nodal Coordination Formulation in Flexible Beams with Large Deformation
下载PDF
导出
摘要 研究了绝对坐标法在大变形柔性梁系统刚-柔耦合动力学问题中的应用.考虑几何非线性,用绝对坐标法推导出有限元离散的平面梁系统的动力学方程.用能量守恒原理验证了绝对坐标法计算结果的正确性.比较大变形时的绝对坐标法与一次近似的混合坐标法的计算结果表明,文中绝对坐标法比一次近似的混合坐标法模型更精确,适合于大变形的情况. The application of an absolute nodal coordinate (ANC) formulation in the coupling dynamics of flexible beams with large deformation was investigated. By using geometric nonlinear formulation and finite element method, the dynamics equations of planar beams system were developed by using the ANC formulation. The comparison between the ANC formulation and nonlinear strain-displacement formulation in the case of small deformation and large deformation indicates that the ANC formulation is more precise and suited for the beams with large deformation. The present results are verified by using the energy conservation law.
作者 李彬 刘锦阳
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第5期827-831,共5页 Journal of Shanghai Jiaotong University
关键词 柔性梁系统 动力学方程 绝对坐标法 大变形 Deformation Energy conservation Finite element method Kinetic theory Numerical methods
  • 相关文献

参考文献6

  • 1Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base [J]. Journal of Guidance, Control and Dynamics, 1987, 10(2):139-150.
  • 2刘锦阳,洪嘉振.大范围运动空间梁的耦合动力学模型[J].上海交通大学学报,2003,37(4):532-534. 被引量:14
  • 3Shabana A A. Finite element incremental approach and exact rigid body inertia[J]. Journal of Mechanical Design, 1996,118: 171- 188.
  • 4Omar M A, Shabana A A. A two-dimensional shear deformable beam for large rotation and deformation problems [J]. Journal of Sound and Vibration, 2001,243 (3) . 565- 576.
  • 5Sbabana A A, Hussien H A, Escalona J L. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems [J].Transactions of the ASME, 1998,120: 188- 195.
  • 6Berneri M, Shabana A A. Development of simple models for the elastic forces in the absolute nodal coordinate formulation [J]. Journal of Sound and Vibration, 2000,235 (4) : 539 - 565.

二级参考文献5

  • 1刘锦阳.刚-柔耦合动力学系统的建模理论研究[D].上海:上海交通大学建筑工程和力学学院,2000.
  • 2Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2) : 139-- 150.
  • 3Mayo J, Dominguez J, Shabana A A. Geometrically nonlinear formulation of beams in flexible multibody dynamics . Journal of Vibration and Acoustics,1995,117:501-509.
  • 4Sharf I. Geometric stiffening in multibody dynamics formulations [J]. Journal of Guidance, Control and Dynmics, 1995, 18(4): 882--891.
  • 5Yoo H H, Ryan R R, Scott R A. Dynamics of flexible beams undergoing overall motions . Journal of Sound and Vibration, 1995, 181 (2): 261--278.

共引文献13

同被引文献278

引证文献17

二级引证文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部