摘要
Granular CoxCu1-x alloy films were prepared by electrodeposition at room temperature directly onto semiconducting Si substrate. X-ray diffraction (XRD) revealed that the as-deposited films formed single phase metastable fcc alloy structure. The fcc lattice parameter α was found to decrease linearly with increasing Co concentration x in the studied range. The giant magnetoresistance (GMR) of the films was improved after annealing. Pure Co fcc diffraction peaks were observed in the diffractogram of the annealed sample, indicating phase separation occurred upon annealing. The optimal annealing temperature was 450℃. The maximum of magnetoresistance (MR) ratio 8.21% was obtained for the Co20Cu80 thin film after annealing at 450℃ for 1 h. The saturation field decreased upon annealing in the MR curves of Co20Cu80 film.
Granular CoxCu1-x alloy films were prepared by electrodeposition at room temperature directly onto semiconducting Si substrate. X-ray diffraction (XRD) revealed that the as-deposited films formed single phase metastable fcc alloy structure. The fcc lattice parameter α was found to decrease linearly with increasing Co concentration x in the studied range. The giant magnetoresistance (GMR) of the films was improved after annealing. Pure Co fcc diffraction peaks were observed in the diffractogram of the annealed sample, indicating phase separation occurred upon annealing. The optimal annealing temperature was 450℃. The maximum of magnetoresistance (MR) ratio 8.21% was obtained for the Co20Cu80 thin film after annealing at 450℃ for 1 h. The saturation field decreased upon annealing in the MR curves of Co20Cu80 film.
基金
This work was supported by the National Natural Science Foundation of China under grant No.50071039,50271046
supported by the United Academy of Education Ministry,Tianjin University and Nankai University.