摘要
近年来,基于关联规则的文本分类方法受到普遍关注。虽然在一般情况下这种方法可获得较好的分类效果。但当样本特征词分布明显不均时,分类规则在各类别的分布也出现不均,从而导致分类准确率下降。本文设计和实现的基于规则权重调整的关联规则文本分类算法可有效地解决这一问题。该算法根据误分类训练样本的数量定义规则强度。对强规则通过乘以小于1的调整因子降低其权重,而弱规则乘以大于1的调整因子提高其权重。实验结果表明经过规则权重的调整,分类质量显著提高。
Recently, categorization methods based on association rules have been given much attention. In general, association classification has the higher accuracy and the better performance. However, the classification accuracy drops rapidly when the distribution of feature words in training set is uneven. Therefore, text categorization algorithm Weighted Association Rules Categorization (WARC) is proposed in this paper. In this method,rule intensity is defined according to the number of misclassified training samples. Each strong rule is multiplied by factor less than 1 to reduce its weight while each weak rule is multiplied by factor more than 1 to increase its weight. The result of research shows that this method can remarkably improve the accuracy of association classification algorithms by regulation of rules weights.
出处
《中文信息学报》
CSCD
北大核心
2005年第4期52-59,共8页
Journal of Chinese Information Processing
基金
国家自然科学基金资助项目(69933010)
福建省教委科技基金资助项目(JB02069)
关键词
计算机应用
中文信息处理
关联分类
规则强度
权重
computer application
Chinese information processing
association classification
rule intensity
weight