摘要
本文以固定机翼式微型飞行器的翼型气动力优化设计为研究背景,在105量级的低雷诺数范围内,把遗传算法与Navier-Stokes方程数值解法相结合,建立了一种以实数编码为基础的自适应算法模型。在基准翼型的基础上,结合锦标赛选择、部分交叉以及自适应变异算子,对翼型进行了升阻比气动力优化设计,并设计了一种高效的复制算子来提高算法的稳定性和计算效率。优化后的翼型升阻比提高显著,表明该算法对低雷诺数翼型的气动外形设计合理有效。
Fixed-wing Airfoil of Micro Air Vehicle was optimized at low Reynolds number to obtain higher lift-drag ratio. Two-dimensional Navier-Stokes solver was coupled with genetic algorithm to develop a real-coded adaptive genetic algorithm model, during which tournament selection, partial cross and adaptive mutation were adopted. Meanwhile a reproduction was designed to improve the GA's robustness and efficiency. The optimal airfoil has much higher lift-drag ratio than the initial NACA0012, which demonstrates feasibility and robustness of this algorithm for aerodynamic optimization design.
出处
《空气动力学学报》
EI
CSCD
北大核心
2005年第2期173-177,共5页
Acta Aerodynamica Sinica
基金
国家自然科学基金(10272073)
教育部教学科研奖励基金
上海市重点学科建设项目.