期刊文献+

Face Recognition Combining Eigen Features with a Parzen Classifier 被引量:1

Face Recognition Combining Eigen Features with a Parzen Classifier
下载PDF
导出
摘要 A face recognition scheme is proposed, wherein a face image is preprocessed by pixel averaging and energy normalizing to reduce data dimension and brightness variation effect, followed by the Fourier transform to estimate the spectrum of the preprocessed image. The principal component analysis is conducted on the spectra of a face image to obtain eigen features. Combining eigen features with a Parzen classifier, experiments are taken on the ORL face database. A face recognition scheme is proposed, wherein a face image is preprocessed by pixel averaging and energy normalizing to reduce data dimension and brightness variation effect, followed by the Fourier transform to estimate the spectrum of the preprocessed image. The principal component analysis is conducted on the spectra of a face image to obtain eigen features. Combining eigen features with a Parzen classifier, experiments are taken on the ORL face database.
出处 《Journal of Electronic Science and Technology of China》 2005年第1期18-21,共4页 中国电子科技(英文版)
关键词 face recognition Fourier transform principal component analysis Parzen classifier pixel averaging energy normalizing face recognition Fourier transform principal component analysis Parzen classifier pixel averaging energy normalizing
  • 相关文献

参考文献1

共引文献8

同被引文献11

  • 1KIM T, KITTLER J, CIPOLLA R. Learning discriminative canonical correlations for object recognition with image sets[J]. Lecture Notes In Computer Science, 2006, 35(93): 251-261.
  • 2CAI D, HE X, HU Y, et al. Learning a spatially smooth subspace for face recognition[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE Computer Society, 2007: 650-656.
  • 3LEI Z, CHU R F, HE R, et al. Face recognition by discriminant analysis with gabor tensor representation [C]//Proceedings of IAPR/IEEE International Conference on Biometrics (ICB-2007). Seoul, Korea: IEEE Computer Society, 2007: 87-95.
  • 4KIM T, KITTLER J, CIPOLLA R. Discriminative learning and recognition of image set classes using canonical correlations[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1005-1018.
  • 5WANG X, TANG X. A Unified framework for subspace face recognition[J]. Trans Pattern Anal Mach Intell, 2004, 26(9): 1222-1228.
  • 6XIE X, LAM K. An Efficient illumination normalization method for face recognition[J]. Pattern Recognition Letters, 2006, 27(6): 609-617.
  • 7LIU D, LAM K, SHEN L. Illumination invariant face recognition[J]. Pattern Recognition, 2005, 38(10): 1705- 1716.
  • 8XIE X, LAM K. Face recognition under varying illumination based on a 2D face shape model[J]. Pattem Recognition, 2005, 38(2): 221-230.
  • 9BELHUMEUR P, KRIEGMAN D. What is the set of images of an object under all possible lighting conditions [C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Canada: IEEE Computer Society, 1996: 270-277.
  • 10GEORGHIADES A, BELHUMEUR P, KRIEGMAN D. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Trans Pattern Anal Mach Intell, 2001, 23(6): 643-660.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部