期刊文献+

结合N-W方法的L-M算法在变压器故障诊断中的应用 被引量:2

Application of L-M algorithm with N-W method in fault diagnosis of transformer
下载PDF
导出
摘要 在分析Levenberg-Marquardt(L-M)算法和Nguyen-Widrow(N-W)方法原理的基础上,提出了一种多层前馈神经网络训练算法,该算法在使用N—W方法初始化神经网络可变参数的基础上使用L-M算法训练多层前馈神经网络。构造了适合于变压器油中溶解气体分析故障诊断的神经网络,使用了标准BP算法、加动量项BP算法和结合N-W方法的L-M算法训练该网络,结果表明算法收敛速度快、不容易陷入局部极小点。将训练所得网络用于变压器油中溶解气体分析故障诊断,诊断结果验证了该方法的有效性。 By analyzing the principles of Levenberg-Marquardt (L-M) algorithm and Nguyen-Widrow (N-W) ANN variable parameters initialization method, the network-training algorithm of multi-layer feedforward is proposed. The N-W method is used to initialize ANN variable parameters. The L-M algorithm is used to train Artificial Neural Network (ANN). The ANN for transformer fault diagnosis based on dissolved gas-in-oil analysis (DGA) is constructed. Training results of BP algorithm, BP algorithm with momentum and L-M algorithm with N-W method are used. The effectiveness of the proposed algorithm is verified by fault diagnosis result of transformers.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2005年第4期1-4,共4页 Journal of North China Electric Power University:Natural Science Edition
  • 相关文献

参考文献11

  • 1Islam S M, Wu T, Ledwich G. A novel fuzzy logic approch to transformer fault diagnosis [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7 (2): 177-186.
  • 2张慧媛,丁扬,宋林.基于模糊神经网络的变压器故障诊断新方法[J].华北电力大学学报(自然科学版),1998,25(2):6-11. 被引量:14
  • 3Lin C E, Ling J M, Huang C L. An expert system for transformer fault diagnosis using dissolved gas analysis [J]. IEEE Transactions on Power Delivery, 1993,8 (1): 231-238.
  • 4王财胜,孙才新,廖瑞金.变压器色谱监测中的 BPNN 故障诊断法[J].中国电机工程学报,1997,17(5):322-325. 被引量:69
  • 5Zhang Y, Ding X, Liu Y, et al. An artificial neural network approach to transformer fault diagnosis [J]. IEEE Transactions on Power Delivery, 1996,11 (4): 1836-1841.
  • 6Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm [J]. IEEE Transactions on Neural Networks, 1994, 5 (6): 989-993.
  • 7何池洋,孙益民,吴根华,陈荣.人工神经网络用于光度法同时测定铜钴镍[J].光谱学与光谱分析,2001,21(5):719-722. 被引量:22
  • 8刘国海,成立.基于神经网络农用感应电动机直接转矩控制[J].农业工程学报,2001,17(4):131-134. 被引量:6
  • 9Nguygen D, Widrow B. Improving the learning Speed of 2-Layer Neural Networks by choosing initial values of the adaptive weights [C]. SanDiego, USA: International Joint Conference on Neural Network, 1990, 17-21.
  • 10Hornik K, Stinchcombe M,White H. Multilayer feedforward network are universal approximators [J]. NeuralNetworks,1989, 2 (5): 359-366.

二级参考文献20

共引文献111

同被引文献13

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部