摘要
为了提高利用卫星图像编制土地覆盖分类图的精度,本研究提出将空间信息(结构特征量、分形特征量)叠加到光谱信息上(原图像),以提高分类精度的方法。利用SPOTHRV图像对此法进行了检验,设立了9个探讨项目,对分类精度进行了比较。结果表明,用分形特征量进行分类时PCC从88.1%上升到了90.2%。
The objective of this study is to evaluate the land cover classificationaccuracy for incorporating the effective spatial information such as texture and fra-ctal features into spectral information. It has been tested using SPOT HRV multi-spectral data.9 cases have been used to evaluate the approach and the classificationaccuracies have been compared.As a result,PCC(Probability of Correct Classifica-tion)is increased from 88.1% to 90.2% by incorporating fractal features.
出处
《环境遥感》
CSCD
1994年第2期150-160,T001,共12页
关键词
土地覆盖
分形特征量
分类图
精度
Texture feature,Fractal feature, Classification accuracy PCC