期刊文献+

基于损失最小化的SVM多类网页分类算法

A STRUCTURAL-LOSS-MINIMIZATION-BASED SUPPORT VECTOR MACHINES APPROACH FOR MULTI-CLASS HYPERTEXT CLASSIFICATION
下载PDF
导出
摘要 本文提出一种基于损失最小化的SVM多类网页分类算法,该算法在多类的网页分类问题上将基于损失最小化的SVM分类算法和KNN相结合,在选择分类器顺序的问题上采用剩余样本最小错误率方法。实验表明该方法简单有效,较大地提高了SVM分类算法的准确性。 A multi-class SVM algorithm for hypertext categorization based on lost-minimization is proposed.In this algorithm,traditional KNN method is corporated into SVM while handling Multi-calss hypertext categorization tasks.The sequence of the classifiers is based on the minimization of the errors of the hold-out samples,Experimental results show the proposed algorithm can perform well with comparison to traditional SVM.
出处 《计算机应用与软件》 CSCD 北大核心 2005年第7期16-17,50,共3页 Computer Applications and Software
基金 上海市科委基础研究重点项目(02DJ14045) 南通市科委创新计划项目资助(A0020)
关键词 分类算法 SVM 最小化 网页 最小错误率 分类问题 KNN 分类器 准确性 Hypertext categorization Vector space model Support vector machines Lost minimization KNN classifier
  • 相关文献

参考文献14

  • 1P.Maes,Agents that reduce work and information overload.Communications of the ACM,37(7):30~40,1994.
  • 2庞剑锋,卜东波,白硕.基于向量空间模型的文本自动分类系统的研究与实现[J].计算机应用研究,2001,18(9):23-26. 被引量:293
  • 3T.Joachims.A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization.In Proc.of the 14th International Conference on Machine Learning ICML97.pp.143-151.1997.
  • 4D.Lewis,R.E.Shapire,J.P.Callan,R Papka,Training Algorithms for Linear Text Classifiers.Proc.19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval:pp.298~306,1996.
  • 5Joaehims T.,Transduetive inference for text classification using support vector machines,In Proceedings of ICML-99.16th International Conference on Machine Learning(Bled,SL,1999),pp.200~209.
  • 6李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108
  • 7Cohen W.W.and Himh H.1998,Joins that generalize:text classification using Whirl.In Proceedings of KDD-98,4th International Confer.enee on Knowledge Discovery and Data Mining(New York,US,1998),PP.169~173.
  • 8V.N.Vapnik,The Nature of Statistical Learning Theory.New York:Springer—Verlag,1995.
  • 9Statistical Learning Theory.New York:Wiley.1998.
  • 10B.Schφlkopf,C.Burges,and A.Smola,Advances in Kernel Methods:Support Vector Learning.Cambridge,MA:MIT Press,1999.

二级参考文献10

  • 1黄萱青 吴立德.独立于语种的文本分类方法[M].,2000.37-43.
  • 2鲁松 白硕 等.文本中词语权重计算方法的改进[M].,2000.31-36.
  • 3卜东波.聚类/分类理论研究及其在大模型文本挖掘的应用:博士论文[M].,2000..
  • 4黄萱菁,2000 International Conference on Multilingual Information Processing,2000年,37页
  • 5鲁松,2000 International Conference on Multilingual Information Processing,2000年,31页
  • 6卜东波,博士学位论文,2000年
  • 7Yang Yiming,Proceedings of ACMSIGIR Conference on Research and Development in Information Retrieval(SIGIR),1999年,42页
  • 8Yang Yiming,J Information Retrieval,1999年,1卷,1/2期,67页
  • 9Lang K,Proc the 12th Int Conference on Machine Learning(ICML 95),1995年,331页
  • 10李晓黎,史忠植.用数据采掘方法获取汉语词性标注规则[J].计算机研究与发展,2000,37(12):1409-1414. 被引量:10

共引文献563

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部