期刊文献+

CMAC学习性能及泛化性能研究综述 被引量:7

Research on Learning and Generalization Capability of CMAC:An Overview
下载PDF
导出
摘要 小脑模型清晰度控制器(CMAC)是一种局部学习前馈网络,结构简单,收敛速度快,易于实现。从其每个神经元来看,各神经元之间是一种线性关系,但从总体结构来看,网络是一种非线性映射关系。而且模型从输入开始就存在一种泛化能力。网络的学习和泛化能力一直是研究热点,因此,该文将对CMAC网络的泛化能力、学习能力以及一些改善途径进行多方面的综合性的讨论。文章最后还将给出一种改善CMAC泛化能力的训练策略,它不仅避免了学习干扰问题加快了学习速度而且可以通过提高训练循环次数增加训练样本量。通过MATLAB仿真发现这种训练策略可以改善CMAC网络的泛化能力。该方法简单有效是可行的。 CMAC ( Cerebellar Model Articulation Controller) is a kind of local learning feed - forward neural network with simple architecture, quick learning convergence and effective implementation. Although it is linear between different nerve cells, the mapping of the whole network is nonlinear. Furthermore a kind of generalization capability is produced along with the input. The learning and generalization capability always attracts much attention of researchers. In this paper, the learning, generalization capability and some improvements are introduced synthetically. In the end, a training strategy is presented which can improve the generalization capability. This strategy not only removes the learning interference and quickens learning speed but also increases sample quantity by advancing training cycle times. Improvement of the generalization capability is proved by the MATLAB simulation. The method is simple, effective and feasible.
作者 周姝春
出处 《计算机仿真》 CSCD 2005年第6期5-7,31,共4页 Computer Simulation
关键词 小脑模型清晰度控制器 泛化能力 学习能力 训练 CMAC Generalization capability Learning capability Training
  • 相关文献

参考文献7

  • 1何超,徐立新,张宇河.CMAC算法收敛性分析及泛化能力研究[J].控制与决策,2001,16(5):523-529. 被引量:29
  • 2E David, S Kwon. Neighborhood Sequential and Random Training Techniques for CMAC[J]. IEEE Tran.Neural Networks, 1995,6(1):196-202.
  • 3King-Lung Huang etc. Cascade-CMAC Neural Network Applications on the Color Scanner to Printer Calibration[C].Proceedings of the 1997 IEEE International Conference on Neural Networks,1997.10-15.
  • 4Selahattin Sayil, Kwang Y.Lee. A Hybrid Maximum Error Algorithm with Neighborhood Training for CMAC[C]. Proceedings of the 2002 International Joint Conference on Neural Networks, Volume: 1,12-17 May 2002. 165 - 170.
  • 5Ming-Feng Yeh,Hung-Ching Lu.On-Line Adaptive Quantization Input Space in CMAC Neural Network[C]. 2002 IEEE International Conference on Systems, Man and Cybernetics, Volume: 4, 6-9 Oct. 2002,4:6.
  • 6Tamás Szabó,Gábor Horváth.Improving the generalization capability of the binary CMAC[C].Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Volume: 3 , 24-27 July 2000 ,3:85 - 90.
  • 7Gábor Horváth,Tamás Szabó.CMAC Neural Network with Improved Generalization Property for System Modeling[C].Instrumentation and Measurement Technology Conference, 2002, 2:21-23.Proceedings of the 19th IEEE ,2002,2 :1603-1608.

二级参考文献10

  • 1李兵.混沌搜索与随机搜索相结合的优化方法.1999年中国智能自动化学术会议论文集[M].北京:清华大学出版社,1999.823-826.
  • 2李兵,1999年中国智能自动化学术会议论文集,1999年,823页
  • 3Ku Sangsoon,Mechatronics,1998年,8卷,4期,381页
  • 4张铃,人工神经网络理论及应用,1997年,214页
  • 5丁丽娟,数值计算方法,1997年,54页
  • 6史荣昌,矩阵分析,1996年,134页
  • 7Gary A L arsen,Proc ASME Dyn Syst Contr Div,1995年,57卷,1期,497页
  • 8Wong Yiufai,IEEE Trans Neural Networks,1992年,3卷,1期,115页
  • 9罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461. 被引量:26
  • 10欧阳楷,陈卉,周萍,周琛.神经计算中坐标变换的网络模型(CMAC)的泛化特性[J].自动化学报,1997,23(4):475-481. 被引量:16

共引文献28

同被引文献59

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部