期刊文献+

核糖体失活蛋白的研究进展 被引量:28

The Study Progress on Ribosome-Inactivating Proteins
下载PDF
导出
摘要 核糖体失活蛋白是一类作用于rRNA而抑制核糖体功能的毒蛋白,广泛存在于高等植物体内。核糖体失活蛋白分为3类:第1类是单肽链蛋白,分子量大约30kD,一般为碱性糖蛋白,具有RNAN-糖苷酶活性;第2种类型是异源二聚体蛋白,分子量大约为60kD,A链具有RNAN-糖苷酶活性,B链是一个对半乳糖专一的凝集素,B链可以分别或同时与真核细胞表面的糖蛋白或糖脂的半乳糖部分结合,介导A链逆向进入胞质溶胶;第3种类型是先合成无活性的核糖体失活蛋白前体,然后在涉及形成活性位点的氨基酸之间进行酶解加工。核糖体失活蛋白通过对核糖体大亚基RNA的3'端茎环结构中一个高度保守的核苷酸区域的作用,破坏核糖体大亚基RNA的结构,使核糖体失活。核糖体失活蛋白的功能主要通过2个方面产生,即RNA的N-糖苷酶活性和RNA水解酶的活性。核糖体失活蛋白不仅对病毒具有广谱抗性,而且对真菌和昆虫也有抗性。核糖体失活蛋白可以给植物提供对病毒和真菌的广谱抗性,这为我们利用有关的核糖体失活蛋白基因提高植物对病毒和真菌的抗性提供了一条新的途径。 Ribosome-inactivating protein (RIP) is a group of toxic proteins inhibiting prokaryotic and eukaryotic ribosome by a specific modification of the large rRNA. It exists popularly in high plants with functions of anti-tumour, anti-virus and anti-fungus. RIPs are classified into three groups based on their physical properties. Type 1 RIPs, are monomeric enzymes, each with an approximate molecular weight of 30kD. They are basic proteins. Most RIPs that have been characterized fall into the type 1 class. Type 2 RIPs, are highly toxic heterodimeric proteins with enzymatic and lectin properties in separate polypeptide subunits, with approximate molecular weight of 60kD. One polypeptide with RIP activity (A-chain) is linked to a galactose binding lectin (B-chain) through a disulfide bond. The lectin chain can bind to galactosyl moieties of glycoproteins and/or glycolipids found on the surface of eukaryotic cells and mediate retrograde transport of the A-chain to the cytosol. Type 3 RIPs are synthesized as inactive precursors (proRIPs) that require proteolytic processing events to occur between amino acids involved in formation of the active site. The enzymatic activity of RIPs was an N-glycosidation to remove a specific adenine corresponding to residue A4324 in rat 28S rRNA. This adenine lies within a 14-nucleotide region that is known as the ?-sarcin loop and is conserved in large rRNAs from bacteria to humans. Expression of RIPs genes can offer transgenic plants broad spectrum resistance to viruses and fungi. This is probably a new way to develop disease-resistant crop varieties.
作者 李建国
出处 《分子植物育种》 CAS CSCD 2005年第4期566-570,共5页 Molecular Plant Breeding
  • 相关文献

参考文献19

  • 1Barbieri L., Battelli M.G., and Stirpe F., 1993, Ribosome-inactivating proteins from plants, Biochim. Biophys. Acta, 1154:237-282
  • 2Chaddock J.A., Lord J.M., Hartley M.R., and Roberts L.M.,1994, Pokeweed antiviral protein (PAP) mutations which permit E. coli growth do not eliminate catalytic activity towards prokaryotic ribosomes, Nucleic Acids Res., 22 (9):1536-1540
  • 3Chen Z.C., Antoniw J.F., White R.F., and Lin Q., 1991, Effect of pokeweed antiviral protein (PAP) on the infection of plant viruses, Plant Pathol., 40:612-620
  • 4Endo Y., and Tsurugi K., 1987, RNA N-glycosidase activity of ricin A-chain: mechanism of action of the toxic lectin ricin on eukaryotic ribosomes, J. Biol. Chem., 262:8128-8130
  • 5Endo Y., and Wool I.G., 1982, The site of action of alpha-sarcin on eukaryotic ribosomes, the sequence at the alpha-sarcin cleavage site in 28S ribosomal ribonucleic acid, J. Biol.Chem., 257(15): 9054-9060
  • 6Hudak K.A., Wang P., and Tumer N.E., 2000, A novel mechanism for inhibition of translation by pokeweed antiviral protein: depurination of the capped RNA template, RNA,6:369-380
  • 7姜国勇,金德敏,翁曼丽,郭宝太,王斌.天花粉蛋白基因转化番茄的研究[J].Acta Botanica Sinica,1999,41(3):334-336. 被引量:29
  • 8Lord J.M., and Robert L.M., 1996, The intracellular transport of ricin: why mammalian cells are killed and how ricinus cells survive, Plant Physiol. Biochem., 34:253-261
  • 9Massiah A.J., and Hartley M.R., 1995, Wheat ribosome-inactivating proteins: seed and leaf forms with different specificities and cofactor requirements, Planta, 197:633-640
  • 10Mundy J., Leah R., Boston R., Endo Y., and Tirpe F., 1994,Genes encoding ribosome-inactivating proteins, Plant Mol.Biol. Rep., 12:60-62

二级参考文献10

共引文献41

同被引文献472

引证文献28

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部