期刊文献+

基于RSA算法的大数乘法器设计 被引量:2

The Design of Large Number Multiplier for RSA Algorithm
下载PDF
导出
摘要 提出了普通阵列乘法电路的改进结构和含流水线的串并乘法电路(SPM)结构。后者比基于Booth算法的n位并行乘法电路更节省资源消耗,由O(n2)降低到O(n),同时相比于n位普通移位乘法器,运算时间复杂度由的O(n2)降低到O(n),且其串行输出特性更适合应用于大数乘法电路。 Two circuit structures which are the optimized multiplier with full-adder array and the serial-parallel multiplier with pipeline inside are put forward. The latter reduces the consumption of resource from O(n2) to O(n) in contrast to the n-bit multiplier based on Booth algorithm. Meanwhile, comparing to the shift-add multiplier, it speeds up the computation from the time complexity O(n2) down to O(n). Further more, its serial output characteristic makes it more suitable for large number multiplier.
出处 《半导体技术》 CAS CSCD 北大核心 2005年第8期65-68,共4页 Semiconductor Technology
基金 2003年教育部科学技术研究重点项目(03130)
  • 相关文献

参考文献9

二级参考文献22

  • 1[1]C.S.Wallace,IEEE Trans.Electron.Comput.,1964, EC-13 (2):14—17.
  • 2[2]Norio Ohkubo and Makoto Suzuki,IEEE J.Solid-State Circuits,1995,30(5):251—256.
  • 3[3]D.Zuras and W.H.McAllister,IEEE J.Solid-State Circuits,1986,SC-21(5):814—819.
  • 4[4]Z-J Mou and F.Jutand,1990 IEEE International Conference on Computer Design:VLSI in Computers and Processors,IEEE Comput.Soc.Press,1990,251—254.
  • 5[5]A.Tyagi,IEEE Trans.Comput.,1993,42(10):1163—1170.
  • 6[6]J.Mori and Masato Magamatsu,IEEE J.Solid-State Circuits,1991,26 (4):600—606.
  • 7Booth A D. A signed binary multiplication technique[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1951,4(2): 236 -240.
  • 8Wallace C S. A suggestion for a fast multiplier[J]. IEEE Transactions on Electronic Computers, 1964, 13 (2). 14-17.
  • 9David Dahan. 17 X 17 - bit high - performance fully synthesizable.
  • 10Vojin G, Oklobdzija. General data -path organization of A MAC Unit for VLSI implementation of DSP processors [S]. Final Report,1997~98 for MICRO Project 97-129.

共引文献44

同被引文献13

  • 1王超,沈海斌,孟庆.RSA密码算法的硬件实现[J].计算机工程与应用,2004,40(14):127-128. 被引量:6
  • 2陈波,王旭,戎蒙恬.The RSA Cryptoprocessor Hardware Implementation Based on Modified Montgomery Algorithm[J].Journal of Shanghai Jiaotong university(Science),2005,10(2):107-111. 被引量:2
  • 3施向东,董平.基于RSA算法的一种新的加密核设计[J].微计算机信息,2005,21(12X):39-41. 被引量:12
  • 4RIVEST R L,SHAMIR A,ADLEMAN L.A method for obtaining digital signatures and public key cryptosystems[J].Communications of the ACM,1978,21(2):120-126.
  • 5冯登国译.密码学原理与实践[M].北京:电子工业出版社,2003.131-185.
  • 6BARRETT P.Implementing the Rivest,Shamir and Adleman public-key encryption algorithm on a standard digital signal processor[A].Proc of Advances in Cryptology:CRYPT0 '86[C].:Berlin,Germany 1987.V263,311-323.
  • 7GROSSSCHADL J.The Chinese remainder theorem and its application in a high-speed RSA crypto chip[A].16th Annual Conf on Computer Security Applications[C].New Orleans,USA,2000.384-393.
  • 8杨栋毅.公钥密码算法的高速SOC实现技术探讨[Z].北京:天一集成科技有限公司.
  • 9Bruce Schneier.应用密码学协议、算法与C源程序.机械工业出版社.11.19.
  • 10Kaliski S. The Montgomery Inverse and Its Applications. IEEE Trans on Computers,1995,44(8): 1064-1065

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部