期刊文献+

基于离散点的蚁群聚类算法的研究 被引量:4

Study of Ants-Clustering Algorithm Based on Outlier
下载PDF
导出
摘要 蚂蚁等群居式昆虫具有分布式、自组织、基于信息素间接通信(pheromone)等群体协作能力,模拟其智能行为的蚁群算法解决了许多复杂的问题并在并在数据聚类分析领域取得成效。本文首先介绍了基于蚂蚁的聚类算法的基本理论,讨论了参数σ对邻域平均相似度的影响并做了实验分析比较,然后提出利用离散点对算法进行改进,通过对离散点的检测算法能够对蚂蚁行为进行控制,使蚂蚁快速地决定下一个负载节点,从而有效地缩短聚类分折的执行时间。实验表明改进后的蚂蚁聚类算法具有较好的聚类特性,其收敛性也得到了有效改善。 Social insects such as ants have the ability of collaboration due to the swarm intelligence of ants and the mechanisms of their distributed behavior, self-organization and pheromone communication. Ant-based clustering has been applied in a variety of areas, such as problems arising in commerce, circuit design data clustering analysis in data-mining community. In this paper, we first present the basic theory of ant-clustering algorithm, discuss the scal- ing parameter which effect on neighborhood function, and analyze the experiment result. We also propose an im- proved algorithm based on outlier. The improved algorithm can check outlier to control the action of ants and decide the next load node quickly, then shorten the executive time and speed the convergence. At last, we compare our algo- rithm with related work and improve its effective.
作者 李瑞 邱玉辉
出处 《计算机科学》 CSCD 北大核心 2005年第6期111-113,223,共4页 Computer Science
基金 重庆市自然科学基金(cstc.2004BB2086)
关键词 聚类算法 离散点 聚类分析 群体协作 蚁群算法 智能行为 分析比较 检测算法 执行时间 聚类特性 蚂蚁 分布式 自组织 信息素 相似度 收敛性 实验 数据 Clustering analysis Ants-clustering algorithm Neighborhood function Scaling parameter Outlier
  • 相关文献

参考文献11

  • 1高尚,杨静宇,吴小俊.聚类问题的蚁群算法[J].计算机工程与应用,2004,40(8):90-91. 被引量:27
  • 2Alsabti K,Ranka S,Singh V. An efficient k-means clustering algorithm. In:Proc. of the First Workshop on High Performance Data Mining, Orlando, FL, March 1998
  • 3Deneubourg J L,Goss S,Franks N,et al. The dynamics of collective sorting: Robot-like ants and ant-like robots. In: J -A Meyer and S Wilson, eds. Proc. of the First Intl. Conf. on Simulation of Adaptive Behaviour: From Animals to Animats 1, MIT Press,Cambridge, MA,1991. 356~365
  • 4Lumer E D,Faieta B. Diversity and Adaptation in Populations of Clustering Ants. In:Cliff D,Husbands P,Meyer J. Wilson S,eds.From Animals to Animats 3, Proc. of the 3rd Int. Conf. on the Simulation of Adaptive Behavior. Cambridge, MA: The MIT Press/Bradford Books, 1994
  • 5Handl J,Knowles J,Dorigo M. Ant-based Clustering: A Comparative study of its relative importance with respect to k-means, average link and 1D-SOM: [Technical Report TR/IRIDIA/2003-24]. Universite Libre de Bruxelles ,2003
  • 6Kuntz P, Snyers D. Emergent colonization and graph partitioning. In: Proc. of the third Intl. Conf. on Simulation of Adaptive Behavior: From Animals to Animats 3 (SAB 94), D. Cliff, P. Husbands, J.A. Meyer, S W Wilson,eds. MIT Press,1994. 494~50
  • 7Monmarch'e N, Slimane M,Venturini G. On improving clustering in numerical databases with artificial ants. In: Lecture Notes in Artificial Intelligence, D Floreano J D Nicoud, F Mondala, eds.Swiss Federal Institute of Technology, Lausanne, Switzerland,(13-17 September 1999). Springer-Verlag,1999. 626~635
  • 8吴斌,郑毅,傅伟鹏,史忠植.一种基于群体智能的客户行为分析算法[J].计算机学报,2003,26(8):913-918. 被引量:46
  • 9乔银锋,顾军华,张勇.蚂蚁算法建立度限制树在聚类中的应用[J].天津理工学院学报,2004,20(1):18-19. 被引量:1
  • 10Hawkins D. Identification of Outliers. London: Chapman and Hall, 1980

二级参考文献18

  • 1黄振华 吴诚一.模式识别[M].杭州:浙江大学出版社,1991.40-62.
  • 2Bonabeau, Dorigo M,Theraulaz G. Inspiration for optimization from social insect behaviour. Nature,2000,406(6) :39-42.
  • 3Dorigo M, Bonabeau E, Theralulaz G. Ant algorithms and stigmergy. Future Generation Computer Systems, 2000, 16(8) : 851-871.
  • 4Stutzle T, Hoos H. MAX-MIN Ant systems. Future Generation Computer Systems, 2000, 16(8) :889-914.
  • 5Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems. New York: Oxford University Press, 1999.
  • 6Gianni Di Caro, Marco Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 1998, 9 : 317 -355.
  • 7Deneubourg J L, Goss S, Frank N, Sendova-hanks A,Detrain C,Chrerien L. The dynamics of collective sorting: robot-like ants and ant-like robots. In: Proceedings of the 1st International Conference on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press/Bradford Books, Cambridge,MA, 1991. 356-363.
  • 8Holland O E, Melhuish C. Stigmergy, self-organisation, and sorting in collective robotics. Artificial Life 1999, 5 (2) : 173-202.
  • 9Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants. In:Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats, 3, MIT Press/Bradford Books, Cambridge, MA, 1994.501-508.
  • 10Kuntz P,Snyers D, Layzell P. A stochastic heuristic for visualizing graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 1999, 5(3) :327-351.

共引文献219

同被引文献21

  • 1徐小慧,张安.基于粒子群优化算法的最佳熵阈值图像分割[J].计算机工程与应用,2006,42(10):8-11. 被引量:31
  • 2张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 3田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 4Duba RO,Hart PE. Pattern classification and scene analysis[M]. New York:John Wiley and Sons, 1973.
  • 5Selim SZ,Alsultmi K. A simulated annealing algorithm for the clustering problem[J].Pattem Recognition, 1991,24(10): 1003- 1008.
  • 6Zulal Gungor, Alper Unler. K-harmonic means data clustering with simulated annealing heuristic[J]. Applied Mathematics and Computation, 2007,184(2): 199-209.
  • 7Sandra Paterlini, Thiemo Krink.Differential evolution and particle swarm optimisation in partitional clustering [J]. Computational Statistics & Data Analysis,2006,50(5): 1220-1247.
  • 8Swagatam Das,Ajith Abraham,Amit Konar. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm[J].Pattern Recognition Letters,2008,29(5):688-699.
  • 9Roberts C,Johnston RL,Wilson NT.A genetic algorithm for the structural optimization of Morse clusters [J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling(Theoretica Chimica Acta), 2000,104(2): 123-130.
  • 10Ling Qing, Wu Gang, Yang Zaiyue, et al. Crowding clustering genetic algorithm for multimodal function optimization[J]. Applied Soft Computing, 2008,8(1):88-95.

引证文献4

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部