期刊文献+

基于支持向量机回归的港口吞吐量非线性组合预测 被引量:7

Nonlinear combined prediction of port throughput based on support vector machine regression
下载PDF
导出
摘要 提出了一种基于支持向量机回归算法的港口吞吐量非线性组合建模预测方法,并运用该方法进行了港口吞吐量预测,同时将该预测结果与其他方法的预测结果进行了比较.结果表明,该方法具有很强的学习及泛化能力,在处理具有一定程度的不确定性的非线性系统的组合建模预测问题时具有很好的应用价值. A nonlinear combined model for prediction of port throughput was presented based on the regression algorithm of support vector machines. The comparison of the predicted result of port throughput by the present method with those of other methods shows that the method developed in this paper is of strong capability in learning and mapping, and has high applicability in modeling for combined prediction of nonlinear systems with some uncertainties.
作者 武骁 宗蓓华
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期482-484,共3页 Journal of Hohai University(Natural Sciences)
基金 上海市高等学校科学技术发展基金资助项目(02IK14)
关键词 港口吞吐量 非线性组合预测 支持向量机回归 <Keyword>port throughput nonlinear combined prediction support vector machine regression
  • 相关文献

参考文献9

  • 1VAPNIK V. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995.46-71.
  • 2CORTES C, VAPNIK V. Support vector networks[ J ]. Machine Learning, 1995,20(3): 273-297.
  • 3SUYKENS J A K, VANDEWALLE J, DE MOOR B. Optimal control by least support vector machines[ J]. Neural Networks, 2001,14( 1 ):23-35.
  • 4BUREGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
  • 5VAN GESTEL T,SUYKENS J A K,BAESTAENS D E,et al. Financial time series prediction using least support vector machines within the evidence framework[ J ]. IEEE Transactions on Neural Networks,2001,12(4): 809-821.
  • 6董景荣.汇率预报的非线性组合建模与预测方法研究[J].重庆师范学院学报(自然科学版),2003,20(3):1-4. 被引量:10
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 8MULLER K R,SMOLA A J,RATSCH G,et al. Predicting time series with support vector machines[A]. In: GERSTNER W,GERMOND A,eds. Proc of the International Conference on Artificial Neural Networks[ C]. Berlin: Springer Verlag, 1997. 999-1004.
  • 9王学哲,王相范.关于几种经济预测模型的应用研究[J].哈尔滨商业大学学报(自然科学版),2001,17(2):36-39. 被引量:11

二级参考文献25

  • 1唐小我,滕颖,曾勇.汇率的组合预测模型及应用[J].预测,1996,15(3):31-36. 被引量:9
  • 2[2]国家统计局国民经济综合统计司新中国五十年统计资料汇编[C].中国统计出版社,1999.
  • 3[3]Robert S. Pindyck, Daniel L. Rubinfeld. Econometrics Models and Economic Forecasts (4th Edition). The McGraw-Hill Companies,Inc., 1998.
  • 4石山铭.等神经网络与非线性预测模型建模及变量的合理选择[J].决策与决策支持系统,1993,3(4):74-78.
  • 5DRUCKER H, BURGES C J, KAUFMAN L,et al. Support Vector Regression Machines[A]. Adv Neural Infor Proc Syst[C]. Cambride:MIT Press,1997,155-161.
  • 6VAPNIK V ,GOLOWICH S ,SMOLA A.Support Vector Method for Function Approximation, Regression Estimation and Signal Processing[A]. Adv Neural Infor Proc Syst[C]. Cambride:MIT Press,1997,281-287.
  • 7BOSER B E, GUYON I M, VAPNIK V N. A Training Algorithm for Optimal Margin Classifiers [A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh:ACM Press, 1992,144-152.
  • 8CAMPBELL C. Algorithmic Approaches to training Support Vector Machines : A Survey [A]. Proc ESANN '2000 [C]. Belgium: D-Facto Publications ,2000,27-36.
  • 9THOMAS H L, KYUNG D N. Combining Foreign Exchange Rate Forecasts Using Neural Networks[J].Global Finance Journal,1998,9(1):5-27.
  • 10GRANER C W J.Forcasting Economic Time Series [M].Znd ed Orland:Academic Press,1986.

共引文献2293

同被引文献65

引证文献7

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部