摘要
本文用人工神经网络方法,以CramerⅢ的BCDEF参数作为输入参数,预测有机物物性.对于153个不同类型有机物的亨利常数(H)的预测结果为:相关系数r=0.9813,标准差SD=0.3369logH单位,对于91种有机物在水中溶解度(S)的预测结果为:相关系数r=0.9855,标准差SD=0.2827logS单位。
A back-propagation neural network was trained on the Cramer's param-eters (BCDEF)to predict the physical properties of organic compounds. The predictionresults of Henry's Law constant of 153 organic compounds are well correlated with theexperiment values(r= 0. 9813 and standard deviation is 0. 3369 log unit).The estima-tion of the aqueous solubilities of 91 organic compounds using neural networks is alsowell correlated with the observed values(r= 0. 9855 and standard deviation is 0. 2827log unit).
出处
《辽宁大学学报(自然科学版)》
CAS
1995年第2期38-41,78,共5页
Journal of Liaoning University:Natural Sciences Edition