摘要
设y ̄1,y ̄2…y ̄n是相互独立的,取正整数值的随机变量,A表示事件y_i-y_(+1)≥0;i=1.2…n-1.那么我们证明在条件A下y_i-y_(i+1)与y_(i+1)是独立的,i=1,2…,K,当且仅当y_i(i=1,2…k)服从几何分布,这里1≤k≤n-1(k个几何分布参数可以不同)。
Suppose y_1.y_2…,y_n is independent each other, choosing the random variate of psoitiveinteger value,A indicates event y_i-y_(i+1_)≥0;i=1,2,…,n= -1.In that way.in the condition of A.y_i-y_(i+×)-y_(i+×)and y_(i+1) are independent,i=1,2,…k. If and only if y_i(i=1,2,…k)submits geometric distribution.here 1≤k≤n-1. Note:k individual geometric distributed parameters may be differeiit.
关键词
刻划
条件独立
几何分布
随机变量
Rule,Independent condition,Geometric distribution