摘要
本文介绍了解点堆中子动力学方程的高次多项式近似的“端点浮动法”,该方法不但具有克服方程刚性和灵活应用的优点,而且能够推广应用于刚性不显著或消失时的大反应性情况。由于近似多项式次数的提高、截断误差的减少、计算的精度有进一步的提高。
The End Floating Method with High-order Polynomial Approximation for solving thePoint Reactor neutron Kinetics Equations is presented. This method has the advantage for overcoming the stiffness of equation with the flexibility in application. Furthermore, this method canbe extented to be applied to the great reactivity condition where the stiffness of equation is notsignificant or dissppeared.Due to the increase of the order of polynomial for approximation,thetruncation error is decreased,and hence the calculating exactness is increased furthermore.
出处
《核动力工程》
EI
CAS
CSCD
北大核心
1995年第2期124-128,共5页
Nuclear Power Engineering
关键词
点堆中子
动力学方程
端点浮动法
Point reactor neutron kinetics equations
Floating End Mehtod Stiffness ofequation Reactivity