摘要
提出一种杆系结构几何优化的广义中间变量近似方法。首先引入一套广义中间变量,包括各杆件局部柔度特性、方向余弦及内力与位移关系矩阵各元素,结构响应与这些广义中间变量的关系比与设计变量本身(即节点坐标和截面积)成更好的线性关系。因此,以广义中间变量做一阶泰勒展开近似位移和内力。应力约束和屈曲约束由近似内力计算。近似问题由优化器在设计变量空间内求解。最后给出了几个算例,结果表明了本文的方法是十分有效的。
An approximation method in terms of generalized intermediate variables for geometryoptimization of trusses is suggested.Firstly,a set of generalized intermediate variables areintroduced,which include local flexible characteristic,directional cosines and elements of re-lation matrix of the internal force vs displacements for each bar. Structural responses aremore linear with respect to the generalized variables than with respect to design variables.Sodisplacements and internal forces are linearized by the first Taylor series expansion in termsof the generalized variables.Stress and buckling constraints are calculated by the approxi-mated forces,The approximated problems are soloved by a optimizer in the design variablespace,Finally,Several examples are given,Results illustrate effficiency of the method.
基金
国家自然科学基金