期刊文献+

基于ECDSA的信息系统安全研究

Information system safety research based on ECDSA
下载PDF
导出
摘要 研究了信息系统安全的相关问题,提出了自建小型认证中心提高信息系统安全性的思想,给出了一种基于椭圆曲线密码体制的数字签名方案,其中包括安全椭圆曲线构造方法、相关参数的选择、HASH函数的选择、密钥的分配和保存等,最后将该方案成功地应用于公安动态信息系统中。 The paper studied the related problem in information system safety, pointed out a method of enhancing MIS's safety by establishing the small authentication center, Implemented a digital signature scheme based on elliptic curve cryptography. The scheme includes the constructing method of safe elliptic curve, the selection of relevant parameters, the selection of HASH function and the distribution and conservation of cipher. Then the scheme was Successfully applied in police dynamic information system.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第7期1859-1861,共3页 Computer Engineering and Design
关键词 数字签名 椭圆曲线密码体制 信息系统安全 digital signature elliptic curve cryptography information system safety
  • 相关文献

参考文献3

二级参考文献9

  • 1[1]Alfred Menezes. Elliptic Curve Pulblic Key Cryptosystems. Kluwer Academic Publishers, 1993
  • 2[2]The Elliptic Curve Cryptosystem for Smart Cards: The Seventh in a Series of ECC White Papers. Avilable at: http://www. certicom. com
  • 3[3]Certicom. Remarks on the Security of the Elliptic Curve Cryptosystem. 1997. avilable at:http://www. certicom. com
  • 4[4]Jorge Guajardo, Christof Paar. Efficient Algorithms for Elliptic Curve Cryptosystems. In: Advances in Cryptology'97.1997. 343~ 355
  • 5[5]Erik De Win et al. A Fast Software Implementation for Arithmetic Operations in GF (2-n). In: Advances in Cryptology-Proceedings of Asias rypt'95. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1996,1163: 65 ~ 76
  • 6[6]Jerome AmSolinas. An Improved Algorithm for Arithmetic on a Family of Elliptic Curves. In: Advances In Advances in Cryptology'97.1997.356 ~ 371
  • 7Shao Z,IEE Proc Comput Digit Tech,1998年
  • 8谭凯军,诸鸿文.基于离散对数的多重数字签名方案[J].信息安全与通信保密,1999,21(2):4-7. 被引量:3
  • 9张玉峰,杨君辉.基于两个数学难题的签名方案[J].信息安全与通信保密,1999,21(2):40-44. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部