期刊文献+

基于蚁群算法求路径规划问题的新方法及仿真 被引量:22

A New Method and Simulation for Path Planning Problem Based on Ant Colony Algorithm
下载PDF
导出
摘要 该文提出了一种基于蚁群算法求解路径规划问题的新方法及其仿真,蚁群算法就是对自然界中蚂蚁的寻食过程进行模拟而得出的一种模拟进化算法。与传统的算法相比,该算法的主要特点是正反馈和并行性,正反馈使得该算法能很快发现较好解,并行性使得该算法易于实现并行计算。虽然蚁群算法在时间复杂度上可能不如传统的算法,但是理论研究表明该方法是一种基于种群的鲁棒性较强的模拟进化算法。最后,利用Java语言对蚁群算法和改进的Dijkstra算法进行了仿真,并进行了比较。 This paper puts forward a new method and simulation for path planning problem (PPP) based on ant colony algorithm (ACA). ACA is a simulated evolutionary algorithm (SEA) of simulating to seek food of ants in nature. Comparing with conventional algorithm, it has several primary characteristics such as positive feedback and parallelism. Positive feedback makes it faster to find better solutions. Parallelism makes it easier to realize parallel computing. Although ACA is not as good as conventional algorithm on the complexity of time, studies on the theory demonstrate that it is a robust SEA based on population. At last, it is simulated by Java and compared with Improved Dijkstra Algorithm.
出处 《计算机仿真》 CSCD 2005年第7期60-62,78,共4页 Computer Simulation
关键词 蚁群算法 路径规划问题 模拟进化算法 Ant colony algorithm (ACA) Path planning problem (PPP) Simulated evolutionary algorithm (SEA)
  • 相关文献

参考文献10

二级参考文献35

  • 1高晖.GIS与GPS的TIS中的应用研究[M].北京:北京航空航天大学,1998.71-88.
  • 2[1]Colorni A.Distributed optimization by ant coloni es[R].Proc.of 1st European Conf.Artificial Life.
  • 3[2]Dorigo M,Gianni Di Caro,Thomas Stutzle.Ant algorithms[J].Fut ure Generation Compuer System,2000,16:5-7.
  • 4[3]Dorigo M Luca,Maria Gamberdella.Ant colony for the traveling s alesman problem[R].TR,IRIDIA,1996.
  • 5[4]Dorigo M,Vittorio Maniezzo,Alberto Colorni.The Ant System:optim ization by a colony of cooperating agents[J].IEEE Transactions on systems,Man, and Cybernetics_Part B,1996,26(1):1-13.
  • 6[5]Thomas Stützle,Holger H Hoos.MAX-MIN Ant System[J].Futur e Generation Computer System,2000,16:889-914.
  • 7[6]Dorigo M.Heuristic from nature for hard combinatorial optimizat ion problems[J].International Transactions in operational research.,3(1):1-2 1.
  • 8[7]Gambardella L M,Taillard E D,Dorigo M.Ant colonies for the qua dratic assignment problem[J].Journal of the Operational Research Society 1999 ,50(2):167-176.
  • 9[8]Gambardella,Luca Maria,Dorigo M.Solving symmetric and asymmetr ic TSPs by and colonies[R].Proceedings of the IEEE Conference on Evolutionary Computation 1996,137-142.
  • 10[9]Dorigo M,Luca Maria Gamberdella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[R].TR,IRIDIA,1996.

共引文献492

同被引文献162

引证文献22

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部