期刊文献+

杂合VPRS与PNN的知识发现方法 被引量:4

A Hybrid Approach of VPRS and PNN to Knowledge Discovery
下载PDF
导出
摘要 本文提出一种变精度粗糙集(Variable precision rough sets,VPRS)与概率神经网络(Probabilistic Neural Network,PNN)杂合的方法.变精度粗糙集对噪声数据有一定的相容性,给定置信阈值β,通过变精度粗糙集模型将信息系统中的冗余属性排除,求出一个最小的知识表示,由此可以约简神经网络的输入.由于概率神经网络的分类及泛化能力较强,接下来应用概率神经网络建立的模型进行分类、预测.实验表明,变精度粗糙集与概率神经网络杂合方法的分类及预测精度均较高.该方法可用于从模糊的、冗余的、不完备的且有噪声的大型数据库中发现知识. The paper proposes a hybrid approach of VPRS (variable precision rough set) and PNN (probabilistic neural network). Variable precision rough sets model is tolerant of noise. Given a confident threshold value β, redundant attributes are eliminated from information system, and a minimal knowledge representation is deducted through variable precision rough sets model. The elimination can remove the redundant input of network. Subsequently, the reduced information table is forwarded to probabilistic neural networks for classification and prediction. The research reveals that the approach of hybrid VPRS and PNN has a high accuracy in classification and prediction. The method can he applied to knowledge discovery from ambiguous, incomplete and noisy database.
出处 《情报学报》 CSSCI 北大核心 2005年第4期426-432,共7页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金,江苏省自然科学基金
关键词 变精度粗糙集 概率神经网络 知识发现 杂合方法 知识表示 发现方法 Network 预测精度 粗糙集 信息系统 variable precision rough set, probabilistlc neural network, knowledge discovery, hybrid approach.
  • 相关文献

参考文献17

  • 1李永敏,朱善君,陈湘晖,韩曾晋,孙增圻.根据粗糙集理论进行BP网络设计的研究[J].系统工程理论与实践,1999,19(4):62-69. 被引量:30
  • 2Fayyad U,Piatetsky-Shapiro,Smyth P.The KDD process for extracting useful knowledge from volumes of data.Communications of the ACM,1996,39(11): 27~34
  • 3Munakata T.Knowledge discovery.Communications of the ACM,1999,42(11): 26~29
  • 4Pal S K,Pedryzc W,Skowron A,et al.Rough-neuro computing.Neurocomputing,1996,36: 1~4
  • 5Jelonek J.Rough set reduction of attributes and their domains for neural networks.Computational Intelligence,1995,11(2): 323~338
  • 6Ziarko W.Variable precision rough set mode.Journal of Computer and System Sciences,1993,46(1): 39~59
  • 7Specht D F.Probabilistic neural networks and the polynomial adeline as complementary techniques for classification.IEEE Transactions on Neural Networks,1990,1(1): 111~121
  • 8Specht D.F.Probabilistic neural networks.Neural Networks,1990,3(1): 109~118
  • 9Wroblewski J.Genetic algorithm in decomposition and classification problems.In: Polkowski L,Slowron A,eds.Rough Sets in Knowledge Discovery 2: Applications,Case Studies and Software Systems.Heidelberg: Physica-Verlag,1998.472~492
  • 10Kryszkiewicz M,Rybinski H.Finding reducts in composed information systems.In: Ziarko W,ed.Rough Sets,Fuzzy Sets and Knowledge Discovery,1993.261~273

二级参考文献7

  • 1汪培庄,模糊系统理论与模糊计算机,1996年
  • 2李洪兴,模糊数学,1994年
  • 3李相镐,模糊聚类分析及其应用,1993年
  • 4罗承忠,模糊集引论.上,1989年
  • 5汤服成,数学的实践与认识,1988年,2期,50页
  • 6李洪兴,数学季刊,1988年,3卷,1期,9页
  • 7朱剑英,模糊系统与数学,1987年,1卷,1期,104页

共引文献29

同被引文献32

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部