期刊文献+

具有空间复合变形构件的机械系统分析方法 被引量:3

SCREW THEORY ON THE ANALYSIS OF MECHANICAL SYSTEMS WITH SPATIAL COMPLIANT LINKS
下载PDF
导出
摘要 用李群李代数的理论方法探讨了具有空间变形构件的机械系统的分析问题。根据弹性力学的基本原理,建立了考虑弯曲、拉伸和扭转的空间变形杆件的弹性方程。将杆件作为基本元素,将其理论扩展应用于具有空间柔性变形杆件的串联机器人系统,分析了系统空间弹性性能与运动学问题。进而,研究了其在柔性并联机构振动平台分析中的应用。最后,应用该理论很好地解决了螺旋弹簧的空间弹性性能分析问题。将李群李代数理论成功地拓展应用于空间柔性机构系统的分析,验证了该方法的有效性。 The mechanical system with spatial compliant links, that is the link under the deflections of bending in the plane, twisting and extending, is studied using screw theory. The elastic equations of a spatial compliant beam are built based on the material theory, and then, this beam theory is applied to the compliance and kinematics analysis of the serial robot with spatial compliant links. The vibrating bowl feeder for industry assembling work is further studied by considering its' legs as leaf springs. Finally, the spatial compliance of the coiled springs is discussed. The Lie groups and Lie algebras is successfully extended to study the mechanical system with spatial compliant links.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第8期63-68,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(50275002)中英联合资助项目
关键词 空间变形 李群李代数 柔性机构 机器人 Spatial compliance Lie groups and Lie algebras Compliant mechanisms Robot
  • 相关文献

参考文献11

  • 1Ball R S. The Theory of Screws. Cambridge. UK: Cambridge University Press, 1900.
  • 2Selig J M. Geometrical Method in Robotics. New York:Springer Verlag, 1996.
  • 3Selig J M. Geometrical Foundations of Robotics. Singapore: Word Scientific Publishing Co. Pte. Ltd., 2000.
  • 4Von M R. Motor Calculus. Graz: University of Technology, 1996.
  • 5Michel G, Daniel R. Mechanical Vibrations-Theory and Application to Structural Dynamics. Paris: Wiley Editoral Offices, 1994.
  • 6Ding X L, Selig J M. On the compliance of coiled springs.International Journal of Mechanical Science, 2004, 46(5):703~727.
  • 7Ding X L, Selig J M. Dynamic modeling of a compliant arm with 6-dimentional tip forces using screw theory. Robotica,2003, 21: 193~197.
  • 8Ding X L, Selig J M. Screw theory on spatial stiffness analysis of robots with elastic joints and links. In: Proc.of Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, China Machine Press,2004: 1 873~1 877.
  • 9Ferdinand P B, Russel J E. Mechanics for Engineers-Statics and Dynamics. Fourth Edition. USA: McGraw-Hill Book Company, 1987.
  • 10John C, Lord C, Carl T F, et al. Strength of Materials and Structures. Fourth Edition. London: Arnold, 1999.

同被引文献116

引证文献3

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部