期刊文献+

从一次测试看关于学生认知的历史发生原理 被引量:28

Justification of the Historical-genetic Principle from a Test
下载PDF
导出
摘要 历史发生原理是运用数学史于数学教育的重要理论基础之一.就数学教育而言,个体数学理解的发展遵循数学思想的历史发展顺序.研究表明:高中一年级学生对虚数相乘问题和无穷级数求和问题的认知过程在很大程度上重蹈了历史发展过程,这验证了学生认知的历史发生原理的有效性. The historical-genetic principle was one of the important arguments taken as reasons for applying the history to teaching and learning mathematics. Through a test on problems of multiplying two imaginary numbers and summing a divergent series, this study justified the principle: the students' recognition of these concepts resembles that of mathematicians in the history. Therefore, this study supported the arguments of H. Poincare, G.Polya and H. Freudenthal.
出处 《数学教育学报》 北大核心 2005年第3期30-33,共4页 Journal of Mathematics Education
关键词 历史发生原理 虚数 无穷级数 The historical-genetic principle imaginary numbers infinite series
  • 相关文献

参考文献12

  • 1汪晓勤,欧阳跃.HPM的历史渊源[J].数学教育学报,2003,12(3):24-27. 被引量:77
  • 2Gulikers I, Blom K. "A Historical Angle": A Survey of Recent Literature on the Use and Value of History in Geometrical Education [J]. Educational Studies in Mathematics, 2001, (47): 223-258.
  • 3Harper E. Ghosts of Diophantus [J]. Educational Studies in Mathematics. 1987. ( 18): 75-90.
  • 4Fauvel J, Maanen J van. History in Mathematics Education [M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 5Kleiner I. Thinking the Unthinkable: The Story of Complex Numbers [J]. Mathematics Teacher, 1988, (81): 583-592.
  • 6McClenon R. B. A Contribution of Leibniz to the History of Complex Numbers [J]. American Mathematical Monthly,1923, (30): 369-374.
  • 7Smith D E. A History of Mathematics (Vol.2) [M]. Boston: Ginns, 1923.
  • 8Kline M. Mathematical Thought from Ancient to Modem Times [M]. New York: Oxford University University, 1972.
  • 9Struik D J. A Concise History of Mathematics [M]. London: G. Bell &Sons, 1954.
  • 10Kline M. Logic Versus Pedagogy [J]. American Mathematical Monthly, 1970, 77 (3): 264-282.

二级参考文献20

  • 1王青建.数学史与数学教育改革刍议[J].数学教育学报,1995,4(4):64-67. 被引量:11
  • 2郭熙汉.数学史与数学教育[J].数学教育学报,1995,4(4):68-72. 被引量:21
  • 3塞尔伯格.Rmanujan百年诞辰之际的反思.数学译林,1990,9(2):154-157.
  • 4Terquem O. Moyen hydrodynamique pour trouver l'aire d'un cercle[J]. Bulletin de Bibliographle, d'Histoire et de Biographie Mathématiques, 1860, (6): 47-48.
  • 5Terquem O. Diophante[J]. Bulletin de Bibliographie,d'Histoire et de Biographie Mathématiques, 1860, (6): 71-72.
  • 6Howson G A History of Mathematical Education in England[M]. Cambridge: Cambridge University Press, 1982.87-92.
  • 7Kleiman S L. Hieronymus Georg Zeuthen[J]. Contemporary Mathematics, 1991, (123): 1-13.
  • 8Heppel G The use of history in teaching mathematics[J].Nature, 1893, (48): 16-18.
  • 9Cajori E A History of Mathematics[M]. New York:Macmillan, 1926. 2-3.
  • 10Fauvel J, Maanen J van. History in Mathematics Education[M]. Dordrecht: Kluwer Academic Publishers, 2000.45.

共引文献76

同被引文献253

引证文献28

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部