期刊文献+

基于支持向量机和遗传算法的水下目标特征选择算法 被引量:19

A New Method for Feature Selection for Underwater Acoustic Targets
下载PDF
导出
摘要 基于统计学习理论和遗传算法理论,提出了一种基于支持向量机和遗传算法相结合的水下目标特征选择算法。通过对实测数据的特征集的优化选择实验,证明了该算法的有效性和鲁棒性,它能较好地解决在复杂水下目标信号所提取的特征维数高,样本采样困难,数目偏少的实际情况下的分类识别问题。 It is crucial to find an effective feature selection method for underwater acoustic targets. In this paper, a new method is proposed for feature selection that uses support vector machines (SVMs) combined with genetic algorithm (GA). GA is used for selecting optimal feature subset on the basis of predicted accuracy of SVMs. The SVM-GA is compared with Sequential Back Selection (SBS), a kind of typical and popular feature selection method. Three different classes of underwater targets datasets are used in the experiment. The results show that the SVM-GA is more effective than SBS for the purpose of feature selection for underwater targets, and with this method the dimension of training data is reduced about 50% while the classification accuracy is almost the same. We conclude that the SVM-GA is an effective feature selection technique to select feature subset of underwater acoustic targets.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2005年第4期512-515,共4页 Journal of Northwestern Polytechnical University
关键词 特征选择 支持向量机 遗传算法 feature selection, support vector machine (SVM), genetic algorithm (GA)
  • 相关文献

参考文献6

  • 1樊养余,孙进才,李平安,许家栋,尚久浩.基于高阶谱的舰船辐射噪声特征提取[J].声学学报,1999,24(6):611-616. 被引量:38
  • 2张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析[J].信号处理,2000,16(2):156-162. 被引量:106
  • 3Mao K Z. Fast Orthogonal Forward Selection Algorithm for Feature Subset Selection. IEEE Transactions on Neural Networks, 2002,13(5):1218~1224.
  • 4Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 5Goldberg D. Genetic Algorithms in Search, Optimization & Machine Learning. Reading: Addison Wesley, 1989.
  • 6Ignacio Rojas, Jesús González, Héctor Pomares, Merelo J J, Castillo P A, Romero G. Statistical Analysis of the Main Parameters Involved in the Design of a Genetic Algorithm. IEEE Transactions on Systems, Man, and Cybernetics--Part C: Applications and Reviews, 2002,32(1): 31~37.

二级参考文献10

共引文献140

同被引文献142

引证文献19

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部