期刊文献+

基于模糊神经网络的升温超塑性成形工艺参数优化 被引量:5

Optimization of Technological Parameters in Calescent Superplastic Forming Based on Fuzzy Neural Network
下载PDF
导出
摘要 为了解决恒温超塑性成形工艺效率低的问题,本文提出了一种升温超塑性成形的新工艺方法,并用模糊神经网络对升温超塑性胀形成形的工艺参数进行优化,得出了优化后的TC4钛合金升温超塑性胀形成形工艺的加载曲线,利用优化后的成形工艺参数进行了某航空器用TC4钛合金薄板盒形件的升温超塑性胀形成形试验。试验结果表明:与恒温超塑性成形相比,此工艺可以显著地缩短成形时间,在本文试验条件下每个零件可以缩短成形时间10min,并可改善材料的成形性,获得厚度分布均匀(厚度分布不均匀率<8%)的成形零件。基于模糊神经网络方法进行成形工艺参数优化的升温超塑性成形方法可在实际生产中应用。 To improve the productivity of the superplastic forming technology, a calescent superplastic forming(CSPF)technological method is proposed. Its technological parameters by using fuzzy neural network (FNN) are optimized and the optimized loading curve of TC4 sheet is obtained. Meanwhile,the calescent superplastic bulge forming of TC4 sheet is tested by using optimized technological parameters for parts of aerostat, Compared with constant temperature superplastic forming (SPF),the CSPF may save processing time (forming time be shorten 10 min), which can also improve the material formability so that the nonuniformity of wall thickness is less than 8%. Moreover, the CSPF may obtain the ideal microstructure of parts, Result show that the CSPF based on FNN optimized technological parameters is suitable in manufacture。
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2005年第4期461-465,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(50275075)资助项目 航空科学基金(03G21008)资助项目。
关键词 工艺参数优化 成形性 升温超塑性 模糊神经网络 technological parameters optimization formability calescent superplastic forming fuzzy neural network
  • 相关文献

参考文献8

  • 1Xing H L, Wang C W, Zhang K F, et al. Recent development in the mechanics of superplasticity and its applications[J]. Journal of Materials Processing Technology, 2004,151 (1-3):196-202.
  • 2Salishchev G A, Galeyev R M, Valiakhmetov O R,et al. Development of Ti-6Al-4V sheet with lowtemperature superplastic properties [J]. Journal of Materials Processing Technology, 2001,116 (2-3) ..265-268.
  • 3Yarlagadda P K D V, Gudimetla P, Adam C. Finite element analysis of high strain rate superplastic forming (SPF) of Al-Ti alloys[J]. Journal of Materials Processing Technology, 2002,130- 131: 469-476.
  • 4Li Ruiping, Mukaidono M, Turksen I. B. A fuzzy neural network for pattern classification and feature selection[J]. Fuzzy Sets and Systems,2002,130(1):101-108.
  • 5俞树荣,张俊武,李建华.基于模糊神经网络的材料力学性能识别[J].甘肃工业大学学报,2001,27(1):8-12. 被引量:4
  • 6Meng Joo Er, Wu Shiqian. A fast learning algorithm for parsimonious fuzzy neural systems [J]. Fuzzy Sets and Systems, 2002,121;(3):337-351.
  • 7Chen Minghe, Gao Lin, Zhu Zhishou, et al. Optimization of technological parameters in the calescent superplastic bulge forming of Ti-6Al-4V alloys sheet based on fuzzy neural network[A]. Materials Science Forum[C]. 2004,471-472:596-602.
  • 8Zhang K F, Wang G F, Wu D Z, et al. Research on the controlling of the thickness distribution in superplastic forming[J]. Journal of Materials Processing Technology, 2004,151 (1-3) :54-57.

二级参考文献4

共引文献3

同被引文献58

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部