摘要
文提出了局部R0-代数的概念,并给出了相应的等价条件,即(i)R0-代数L是局部的,(ii)(?)x∈L,ord(x)<∞或ord(-x)<∞,(iii)每—个真滤子是primary.另外,我们又证明了任一R0-代数是局部R0-代数的子直积.
Local R0-algebras are defined and studied. The following statements are proved to be equivalent: (i) R0-algebra L is local; (ii) arbitrary x ∈L, either ord(x) ∞ eo or ord(-x) 〈 ∞; (iii) Every proper filter is primary. Moreover, it is proved that each R0- algebra is a subdirect product of the local R0-algebras.
基金
国家基础专项基金(G1999032801)国家自然科学基金(50136030)