期刊文献+

添加Zr元素对纳米复相Nd_(10.5)Fe)(78.4-x)Co_5Zr_xB_(6.1)粘结永磁体结构和磁性能的影响 被引量:12

Effect of Zr Addition on Microstructure and Magnetic Properties of Nanocomposite Nd_(10.5)Fe)(78.4-x)Co_5Zr_xB_(6.1) (x=0, 1.0, 1.5, 2.0, 2.5) Bonded Magnets
下载PDF
导出
摘要 采用快淬、热处理及模压成形工艺,制备了成分为Nd10.5Fe78.4-xCo5ZrxB6.1(x=0,1.0,1.5,2.0,2.5)的5种粘结永磁体。采用XRD,DTA,TEM等方法对合金的组织结构和晶化行为进行了研究。结果表明:Zr含量的增加可提高材料的非晶形成能力;当Zr添加到一定量时,形成高熔点的Fe2Zr相,产生细化晶粒的作用;添加Zr元素显著地提高了合金的矫顽力,改善了退磁曲线矩形度,从而提高了最大磁能积。Nd10.5Fe78.4-xCo5ZrxB6.1永磁体在x=2时获得最佳磁性能,Br=0.659T,Hcj=628kA/m,Hcb=419kA/m,(BH)m=73kJ/m3。 Five kinds of bonded magnets with the compositions (at%) of Nd10.5Fe78.4-xCo5ZrxB6.1(x=0, 1.0, 1.5, 2.0, 2.5) were prepared by melt-spinning, post heat treatment and mould pressing. The microstructure and crystallization behavior was studied by X-ray diffraction (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). The results suggest that high Zr concentration can increase the glass formation ability (GFA) of alloys. The Fe2Zr with high melting point forms in the alloys, when the content of Zr is controlled at a certain amount, and it can reduce the grain size. The coercivity and the squareness of demagnetization loop are obviously improved by the addition of Zr, and the energy product is accordingly increased. As a result, the excellent magnetic properties with Br=0.659 T, Hcj=628 kA/m, Hcb=419 kA/m, (BH)m=73 kJ/m^3 are obtained in Nd10.5Fe78.4-xCo5ZrxB6.1 bonded magnet with x=2.
机构地区 四川大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2005年第8期1326-1329,共4页 Rare Metal Materials and Engineering
基金 国家863计划基金资助项目(2001AA324030 四川省杰出青年基金前期项目(03GG009-028) 国家863计划资助项目(2004AA32G084)
关键词 ZR 纳米复相磁体 微观结构 磁性能 Zr, nanocomposite magnets microstructure magnetic properties
  • 相关文献

参考文献3

二级参考文献39

  • 1Croat J J, Herbst J F, Lee R W, Pinkerton P E. Journal of Applied Physics [J], 1984, 55(6):2078-2082.
  • 2Ping D H, Wu Y Q, Hono K. Journal of Magnetism and Magnetic Materials[J], 2002, 239:437-440.
  • 3Ping D H, Hono K, Hirosawa S. J Appl Phys[J], 1998, 83:7 769 - 7 779.
  • 4Wu Y Q, Ping D H, Hono K et al. IEEE Trans Magn[J], 1999,35(5):3 295-3 297.
  • 5Ping D H, Hono K, Kanekiyo H et al. Acta Mater[J], 1999,47(18):4641-4651.
  • 6Ping D H, Hono K, Kanekiyo H et al. IEEE Mag Mag[J],1999, 35:3 265 -3 264.
  • 7Wu Y Q, Ping, D H, Murty B S et al. Scripta Materials [J],2001, 45:355-362.
  • 8Sano N, Tomida, T Hirosawa Set al. Materials Science and Engineering[J], 1998, A250:146-151.
  • 9Wu Y Q, Yamamoto H, Hono K. Scripta Mater[J], 2001, 44:2 399-2 404.
  • 10Xiong X Y, Hono K, Hirosawa S et al. J Appl Phys[J], 2002,91:9 308-9 314.

共引文献69

同被引文献138

引证文献12

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部