期刊文献+

自适应交互多模型算法在机动目标跟踪中的应用 被引量:2

Application of the Adaptive Interacting Multiple Model in Maneuvering Targets Tracking
下载PDF
导出
摘要 针对多模型算法在机动目标跟踪中存在的问题,运用交互多模型算法(IMM)和自适应滤波理论,设计了一种自适应交互多模型算法(AIMM),结合目标运动模型对目标当前加速度和其方差进行估计,并在此基础上给出了AIMM中模型集和模型转移概率的设计方法,进行了计算机仿真。蒙特卡罗仿真结果表明,与标准IMM算法相比,该算法比IMM算法的跟踪性能有很大提高,跟踪复杂机动目标比IMM有更快的收敛速度,跟踪滞后问题得到较好的解决,跟踪目标的稳定性和精确性均优于IMM算法,有利于机动目标的实时跟踪。 A new adaptive interacting multiple model(AIMM) algorithm is designed using the standard IMM algorithm and adaptive theories, according to the problems in maneuvering target tracking using IMM. Combined with the target maneuvering models, the current acceleration of the target and its covariance are estimated, by which the model set and the model transition probability are designed. The Monte Carlo simulation results indicate that the tracking performance is proved when tracking complex maneuvering target using AIMM. The AIMM has faster constringency and more stable and accurate tracking performance than the standard IMM which is effective in real-time target tracking.
出处 《情报指挥控制系统与仿真技术》 2005年第4期24-27,42,共5页 Information Command Control System and Simulation Technology
关键词 目标跟踪 交互多模型算法 自适应 蒙特卡罗仿真 target tracking interacting multiple model algorithm adaptive Monte Carlo simulation
  • 相关文献

参考文献5

  • 1王洁,韩崇昭,李晓榕.多模型估计方法[J].火力与指挥控制,2001,26(4):1-5. 被引量:14
  • 2[2]MAZOR E, AVERBUCHA, BAR-SHALOM Y, et al. Interacting multiple model methods in targets tracking: A Survey[J]. IEEE Trans , On Aerospace and Electronic Systems, 1998,34(1):103-123.
  • 3[3]Li X R, Bar Shalom Y. Multiple Model Estimation with Variable Structure[J]. IEEE Trans. AC, 1996,41(4); 478-193.
  • 4吕伟杰,刘鲁源.多模型自适应控制理论的研究[J].仪器仪表学报,2001,22(z1):440-441. 被引量:7
  • 5[5]Gustafson J A, Maybeck P S. Flexible spacestructure control via moving-bank multiple model algorithms. IEEE Trans Aerosp ElectrSyst[J], 1994, 30(7): 671~684.

二级参考文献27

  • 1[1]Lainiotis D G.Optimal Adaptive Estimation Structureand Parameter Adaptation.IEEE Trans on Autom Contr,1971,16(2):160~170.
  • 2[2]Clement Yu,Roy R J,Kaufman H,et.al.Multiple-model Adaptive Predictive Control of Mean Arterial Pressure and Cardiac Output.IEEE Trans on Bio Eng,1992,39(8):765~777.
  • 3[3]Maybeck P S,Pogoda D.Multiple Model Adaptive Control for the STOL F-15 with Sensor/Actuator Failures.Proceeding of the 33rd Conference on Decision and Control,Lake Buena Vista,1994:1566~1572.
  • 4[4]Narendra K S,Balakrish J,Ciliz M K.Adaptation and Learning Using Multiple Model Switching and Tuning.IEEE Control Systems,1995,15(3):37~51.
  • 5[5]Gundala R,Hoo K A,Piovoso M J.Multiple Model Adaptive Control Design for a Multiple-Input Multiple-Output Chemical Reactor.Industrial and Engineering Chemistry Research,2000,39(6):1554~1564.
  • 6Li X R.Hybird Estimation Techniques in Control and Dynamic Systems:Advances in Theory and Applications(Leondes C.T,ed.)[M].New York:Academic Press,1996,76:213-287.
  • 7Blon H A P.An Efficient Filter for Abruptly Changing Systems[C].In Proc.23rdIEEE Conf.Decision and Control,1984,656-658.
  • 8Blom H A P, Bar Shalom Y.The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients[J].IEEE Trans.AC,1988,33(4):780-783.
  • 9Bar Shalom Y,Chang K D, Blom H A P.Tracking a Maneuvering Target Using Input Estimation Versus the Interacting Multiple Model Algorithm[J].IEEE Trans.AES,1989,25(2):296-300.
  • 10Averbuch,Itzikowitz S, Kapon T.Radar Target Tracking-Viterbi Versus IMM[J].IEEE Trans.AES,1991,27(2):550-563

共引文献19

同被引文献13

  • 1方青,梅晓春,张育平.用于机动目标跟踪的Kalman滤波器的设计[J].雷达科学与技术,2006,4(1):50-55. 被引量:21
  • 2卢建斌,胡卫东,郁文贤.基于协方差控制的相控阵雷达资源管理算法[J].电子学报,2007,35(3):402-408. 被引量:45
  • 3[2]Xia Qijun,Rao Ming,Ying Yiqun,et al.Adaptive Fading Kalman Filter with An Application[J].Automatic,1994,30(12):133-1338.
  • 4库索夫可夫HT 章燕申(译).控制系统的最优滤波和辨识方法[M].北京:国防工业出版社,1984..
  • 5Mo W, Chen G, Blasch E, et al. Game Theoretic Multiple Mobile Sensor Management under Adversarial Environments [C]//Proc. of IEEE International Conference on Information Fusion, 2008.
  • 6Kreucher C M,Hero A O,Kastella K D,et al. An Information-Based Approach to Sensor Management in Large Dynamic Networks [C]// Proc. of IEEE,2007.
  • 7Kreucher C M, Kastella K D, Hero A O. Multi- Platform Information-Based Sensor Management [C]//Proe. of SPIE Defense Transformation and Network-Centrie Systems, 2005.
  • 8Li X R, Bar Shalom Y. Multiple Model Estimation with Variable Structure [C]//IEEE Trans. on Automatic Control, 1996 ,AC-41 : 478-493.
  • 9Kirubarajan T, Bar Shalom Y, Pattipati K R,et al. Ground Target Tracking with Variable Structure IMM Estimator [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998.36 ( 1 ) : 26- 46.
  • 10寇英信,王琳,刘文杰,滕鹏.信息熵理论在作战任务状态需求分析中的应用[J].系统仿真学报,2009,21(5):1427-1431. 被引量:4

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部