2Forbes JR, Cox DW. Copper-dependent trafficking of Wilson disease mutant ATP7B proteins[J]. Hum Mol Genet, 2000,9(13) :1927-1935.
3Moore SD, Helnde KE, Prat LM, et al. Tissue localization of the copper chaperone ATOX1 and its potential role in disease[J]. Mamm C, enome,2002,13(10) :563-568.
4Liu PC, Koeller DM, Kaler SG. C, enomic organization of ATOX1, a human copper chaperone[ J ]. BMC C, enet. 2003.4( 1 ) :4.
5Lu ZH, Damemn CT, Solioz M. The entemcoccus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions [ J ]. Biometals, 2003,16 ( 1 ) : 137-143.
6Culotta VC, Lin SJ, Schmidt P, et all Intracellular pathways of copper trafficking in yeast and humans[J]. Adv Exp Med Biol, 1999,448:247 -254.
7Walker JM, Tsivkovskii R, Lutsenko S. Metallochaperone Atoxl transfers copper to the NH2-terminal domain of the Wilson's disease protein and regulates its catalytic activity[J]. J Biol Chem, 2002,277(31) :27953-27959.
8Mira H, Vilar M, Perez-Paya E, et al. Functional and conformational properties of the exclusive C-domain from the Arabidopsis copper chaperone (CCH) [ J ]. Biochem J, 2001,357 (Pt 2) :545-549.
9Fatemi N, Sarkar B. Molecular mechanism of copper transport in Wilson disease[J]. Environ Health Perspect, 2002,110(Suppl 5) :695-698.
10Oh WJ, Kim EK, Ko JH, et al. Nuclear proteins that bind to metal response element a (MREa) in the Wilson disease gene promoter are Ku autoantigens and the Ku-80 subunit is necessary for basal transcription ofthe WD gene[J]. Eur J Biochem, 2002,269(8):2151-2161.