摘要
本文给出了丢番图方程y2=2mx5+nx4+2Lx3+kx2+2tx-d2在某种条件下整数解的存在区间。
In the paper. we prove the following theorem.Theorem Supposing m > 0, 2d. 2 (m + L + t) + n + 1, 2. 5 (mod 8). and an arbitrary odd prime factor p of d' s satisfies p3 (mod 4), if (i) 2m + 2L- n > max { 0, k - 2t}or (ii) 2m + 2L - n = 0 and 2t = k < 0. then the integer solution of the Diophantine equation(1) satisfies x≡ 3 (mod 4). x< 0 and x> min {.