摘要
本文讨论了Baskakov算子加Jacobi权逼近的收敛性。首先指出了按通常的加权范数,Baskakov算子是无界的,然后引入一种新的范数,在此范数下,Baskakov算子具有压缩性,最后借助于K-泛函,我们着重讨论了它的特征刻划问题。
in this paper, first we show that the Baskakov operator is unbounded with usual weighted norm; then we give a new norm, and with this new norm, Baskakov operators have the property of contraction; and lastly, we discuss mainly the direct and inverse results for Baskakov operators with Jacobi-weights.
出处
《应用数学学报》
CSCD
北大核心
1995年第1期129-139,共11页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
浙江省自然科学基金
关键词
BASKAKOV算子
加权逼近
收敛阶
逼近
Baskakov operators
weighted approximation
convergence rate
K-functional
charaterizations