期刊文献+

基于时间序列分析法的医院月门诊量预测模型 被引量:5

A predictive model of hospital out-patient monthly workload with time ranking method
下载PDF
导出
摘要 目的 分析影响医院月门诊量的主要因素,提高医院月门诊量预测工作准确性,提高科学预见性. 方法 采用X-11季节调整方法、引入虚拟变量拟合趋势直线方程,剔除趋势后建立ARIMA模型,预测医院的各月门诊量,并与月门诊量时间序列直接建立的ARIMA模型进行比较. 结果 趋势模型3个参数的拟合系数均很显著,以残差序列所建立的ARIMA模型的参数也均是显著的. 结论 剔除季节因素和趋势因素建立的ARIMA模型,对时间序列进行拟合的结果远远优于直接对月门诊量建立的ARIMA模型的拟合结果.ARIMA模型更适合于做短期预测,对剔除季节因素和趋势因素的平稳时间序列以ARMA模型拟合后,再合成季节因素和趋势因素的模型所做的中长期预测精度高.
出处 《中国医院统计》 2009年第4期-,共4页 Chinese Journal of Hospital Statistics
  • 相关文献

同被引文献31

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部