摘要
通过构造Schrdinger方程的Crank-Nicolson格式,再利用Richardson外推法得到了一种高精度差分格式,这种格式具有O(τ~4+h^4)阶精度,且是无条件稳定的.数值算例表明,该算法比古典Crank-Nicolson格式精度更高.
The Crank-Nicolson scheme is presented for solving Schrdinger equation.The Richardson's extrapolation method is successfully applied to the scheme.Meanwhile,the numerical solution can be gained with accuracy of O(τ~4+h^4).This method is shown to be unconditionally stable.The result of numerical experiment shows that the new scheme has higher accuracy than Crank-Nicolson scheme.
出处
《吉首大学学报(自然科学版)》
CAS
2010年第6期19-22,共4页
Journal of Jishou University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(10961024)
新疆高校科研计划资助项目(XJEDU2007I02)